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Subspace-based Adaptive GMM Error Modeling for
Fault-Aware Pseudorange-based Positioning in

Urban Canyons
Penggao Yan, Xiao Xia, Michele Brizzi, Weisong Wen, Li-Ta Hsu Senior Member, IEEE

Abstract—Global navigation satellite system (GNSS) position-
ing is essential for achieving absolute vehicular positioning in
urban scenarios; however, it suffers from limited measurement
redundancy and substantial faults caused by complex urban envi-
ronments. In this work, we propose the subspace-based adaptive
error modeling and fault detection and exclusion (FDE) method
for pseudorange-based GNSS positioning in urban canyons,
which integrates the adaptive error modeling into the FDE
process and the positioning-solving process. Notably, we divide
the pseudorange measurement space into subspaces regarding
elevation angle and carrier-to-noise ratio (C/N0), each of which
maintains a Gaussian mixture model (GMM) to adaptively
characterize measurement error profiles. Results show that the
proposed method has the ability to detect environmental changes.
In addition, the proposed method outperforms the conventional
FDE method with Gaussian assumptions, reducing the mean po-
sitioning error by 16% and 9% in slightly and medium urbanized
datasets, respectively. The impacts of step size (elevation angle
and C/N0) and time window of the proposed method are discussed
through controlled experiments.

Index Terms—Adaptive error modeling, fault detection, global
navigation satellite system, Gaussian mixture model, urban
canyons

I. INTRODUCTION

GLOBAL navigation satellite system (GNSS) positioning
plays a crucial role in enabling intelligent vehicles to

navigate and operate effectively in urban scenarios by pro-
viding absolute positioning information [1]. By leveraging
the information of absolute positioning, intelligent vehicles
can precisely determine their position within the urban en-
vironment, enabling them to make informed decisions, such
as lateral control [2], collision avoidance [3], [4], and route
planning [5], [6]. Although the map-based LiDAR positioning
method can also provide absolute positioning information, it
comes with certain drawbacks, such as the high cost associated
with map maintenance [7] and the vulnerability of LiDAR to
adverse weather conditions [8], [9]. Therefore, GNSS stands
out as a cost-effective and indispensable solution for the
absolute positioning of intelligent vehicles in urban scenarios.
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However, the complex urban environments pose substantial
challenges for GNSS positioning [10]. The GNSS signals can
be affected by various environmental objects, such as high
buildings and trees, which results in the reflection, diffusion,
or blockage of the GNSS signals, consequently reducing
the reliability of GNSS measurement as well as introducing
substantial measurement faults [10], [11].

Fault detection and exclusion methods with Gaussian error
modeling: One dominant solution to handle faults in GNSS
measurements is employing fault detection and exclusion
(FDE), which is the technology to check the occurrence of
faults in the system and to determine the time when faults
occur [12]. In this paper, we define faults as unmodelled mea-
surement errors that substantially compromise the positioning
solution, such as non-line-of-sight (NLOS) errors [13]–[17].
Those measurement errors that have relatively smaller impacts
and are induced by environments are regarded as nominal mea-
surement errors. Indeed, there is some intersection between
the nominal measurement errors and the faults, which makes
it difficult to distinguish the difference in a sole GNSS posi-
tioning system. Therefore, the definition of faults and nominal
measurement error emphasizes the impacts of measurements
on the positioning solution. The fundamental principle of FDE
is to identify measurements that deviate from the system’s
expected behavior, where abnormal measurements usually
show a considerable inconsistency with normal measurements
[18]. Researchers have been utilizing this inconsistency to
develop various FDE methods, such as parity space [19], chi-
squared test [16], [20], and solution separation [13], [21],
which are further intergeted in receiver autonomous integrity
monitoring (RAIM) [14], [15] and advanced RAIM (ARAIM)
[13], [16] algorithms for integrity monitoring purpose. These
methods usually assume that GNSS measurement errors are
Gaussian-distributed. Indeed, this assumption brings several
benefits, such as requiring fewer parameters (only two) in
describing the distribution and two uncorrelated Gaussian vari-
ables are mutually independent. The latter property is actually
the theoretical basis for developing the parity space and Chi-
squared method [19]. However, many studies have exemplified
that GNSS measurement errors have non-Gaussian properties
[22], [23]. The unrealistic Gaussian assumptions can result in
degraded fault detection rates in real-world applications [24],
limiting the reliability and effectiveness of preventing systems
from faults.

Fault detection and exclusion methods with non-Gaussian
error modeling: To remedy these non-Gaussian issues, re-
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searchers explore the possibility of incorporating non-Gaussian
error modeling in developing fault detection algorithms. Two
distinct approaches emerge, including the particle filter (PF)
[25]–[27] and the Gaussian sum filter (GSF) [28], [29] ap-
proaches. In the PF approach, the measurement set is typically
partitioned into multiple subsets. Within each subset, a PF
with non-Gaussian error modeling is employed to estimate the
state and its likelihood. Then a cumulative log-likelihood ratio
(LLR) test is constructed by using the likelihood produced
by each auxiliary PF and the main PF [26]. However, the
PF approach necessitates a significant computational burden,
which makes it difficult to fulfill the real-time requirements
for vehicular positioning. In the GSF approach, the Gaussian
mixture model (GMM) is employed to model measurement
noise, and several parallel Kalman filters are utilized to address
each Gaussian component. Residuals generated from each sub-
filter are summed up according to the mixture weight of GMM,
based on which a chi-squared test is conducted to detect
potential faults [28].

Static error modeling is inadequate in urban scenarios: It
is easy to find that the Gaussian and GSF approaches involve
modeling nominal measurement error, i.e., the measurement
error in fault-free conditions. In the aviation field, the exact
profile of GNSS measurement errors in open-sky conditions
has been identified based on a large number of observations
[20], [30]. However, the situation becomes contradictory in
urban scenarios. Due to the impacts of various environmental
objects, the GNSS measurement is distorted and its error
profile changes with environment [10], [11]. To tackle these
issues, goGPS has been proposed [31]. GoGPS models the
GNSS measurement error as Gaussian distribution, whose
variance is identified as a function of elevation angle and
carrier-to-noise ratio (C/N0) [31]. However, this method has an
underlying assumption that the uncertainty of GNSS measure-
ments with the same elevation angles and C/N0 values remains
constant across different urban scenarios; in other words,
the error modeling process is static and primarily based on
historical data, which may not capture the dynamic and diverse
characteristics of urban environments. Although users can
choose different weighting schemes by adjusting parameters in
goGPS to accommodate the current environment, a substantial
amount of data must be collected to determine the optimal
parameters, which is impractical for real-time GNSS vehicular
positioning systems in dynamic scenarios [32], [33].

Adaptive error modeling can be substantially affected by
faulty measurements: Recently, Pfeifer and Protzel demon-
strated a promising approach to solve the issues in the static
error modeling. They proposed the concept of multimodal and
adaptive error modeling [34] and embedded it in the robust
estimation architecture [35], aiming to estimate positioning
states and parameters of the measurement error distribution
simultaneously. In their work, the GNSS measurement error
model is represented by a GMM, and its parameters are
updated by fitting a GMM model to historical measurement
residuals. This method can adjust the weights of measurements
based on the updated error profile, making it possible to
adapt to environmental changes. However, this method did not
consider the impacts of faulty measurements on identifying

the measurement error distribution with the residual data.
Specifically, residuals are obtained by differentiating the raw
measurements from predicted ones based on the measure-
ment model and the estimated state, both of which could
be substantially affected by faulty measurements. Therefore,
a countermeasure is needed to reduce the impacts of faulty
measurements on the quality of residual data before error
modeling. In addition, this method assumes that GNSS mea-
surements obtained from different satellite-user geometry have
the same error profile, which is not practical even in open-sky
conditions, let alone in urban scenarios.

To tackle these issues in the adaptive error modeling
method, we propose the subspace-based adaptive GMM error
modeling and FDE method by combining the principles of
FDE with the adaptive error modeling process, providing a
practical solution for accurate GNSS positioning in urban
scenarios. Specifically, we divide the GNSS pseudorange
measurement space into a set of distinct subspaces based
on elevation angle and carrier-to-noise ratio (C/N0), each of
which is represented with a bin. At each epoch that receives
new GNSS measurements, we employ the FDE technique
to identify “healthy” measurements, which are utilized to
compute the measurement residuals. Then, each residual is
assigned to the best-matched bin according to its associated
elevation angle and C/N0. At the same time, outdated residual
data is removed based on a predefined window size. For
each updated bin, we utilize the collected residuals to fit a
GMM distribution, which serves as the error model for GNSS
pseudorange measurements within that particular subspace.
In the subsequent epoch, the updated error model is utilized
to calculate the weighting matrix based on the law of total
variance. This weighting matrix is then adopted by both the
FDE and position solver to enhance their performance.

The proposed method is evaluated on two urban datasets,
including a slightly urban dataset and a medium urban dataset.
The evolution of error models is compared with the change
pattern of surroundings, where a strong relationship between
them are found. In addition, results show that the surrounding
change at a short period can only affect the error models with
specific elevation angles, indicating that the partition of the
measurement space is beneficial to establish a more accurate
error model for GNSS pseudorange measurements. Further-
more, the proposed method is compared with the conventional
FDE method with Gaussian assumption, robust estimation with
Gaussian error modeling, and robust estimation with adaptive
GMM error modeling, regarding the positioning performance.
On both datasets, the proposed method demonstrates the best
positioning performance, where a 16% and a 9% reduction
of mean positioning error are achieved compared to the con-
ventional FDE method with Gaussian assumption. Moreover,
the superiority of the proposed method to the robust estimation
with adaptive GMM error modeling reveals that the integration
of the FDE process reduces the impact of environments on
characterizing the error profile of GNSS measurements.

The contributions of this work are as three folds:
1) Propose a subspace-based adaptive GMM error model-

ing method for GNSS measurements in urban scenarios,
which provides a cost-effective way to capture changes
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in environments, serving as the basis for determining the
weighting scheme in positioning solver and FDE.

2) Propose a practical framework for detecting and exclud-
ing faulty GNSS measurements based on the adaptive
GMM error modeling, which strengthens the adaptive
ability of GNSS positioning systems to changing envi-
ronments, thereby enhancing GNSS positioning perfor-
mance in urban canyons.

3) Experimentally demonstrates the effectiveness of the
proposed framework in two distinct urban datasets. Fur-
thermore, we discuss the impacts of step size (elevation
angle and C/N0) and time window on the positioning
performance of the proposed method, tentatively giving
recommendations for practice in urban areas.

The rest of this article is organized as follows. Section
II describes the conventional FDE method with Gaussian
assumptions for GNSS positioning systems and points out its
limitation in urban scenarios. Section III first introduces the
feature of the GMM and proposes the subspace-based adaptive
GMM error modeling and FDE method for GNSS positioning
in urban areas. In Section IV, we examine the performance of
the proposed method in error modeling, fault detection, and
positioning on two urban datasets. In Section V, we discuss
the impacts of step size (elevation angle and C/N0) and time
window parameters in the proposed method. Section VI gives
a summary.

II. FAULT DETECTION WITH GAUSSIAN ERROR MODELING

A. Weighted Least Square Estimation in GNSS

The GNSS pseudorange measurement model can be formal-
ized as follows [1]:

ρi =

√
(xs,i − x)2 + (ys,i − y)2 + (zs,i − z)2 + cδr + εi , (1)

where ρi is the ith pseudorange measurement,
[xs,i, ys,i, zs,i]

T is the position of ith satellite, [x, y, z]
T

is the receiver position, δr is the receiver clock bias from
single satellite constellation (GPS or BeiDou), c = 3×108 m/s
is the speed of light, and εi is the measurement error. In
this work, the pseudorange measurement is corrected by
applying the Differential Global Navigation Satellite System
(DGNSS) technique, which removes common errors including
satellite clock errors, ephemeris errors, ionospheric errors,
and tropospheric errors in pseudorange measurement [1].
The reference station clock offset is also compensated. All
processes are accomplished by using RTKLIB [36]. The
right hand side (RHS) of (1) can be linearized by taking
the first-order Taylor expansion at x0 = [x0, y0, z0, δr,0]

T as
follows:

ρi=ρi,0 − ai,1 (x− x0)− ai,2 (y − y0)− ai,3 (z − z0)

+c(δr − δr,0) + εi ,
(2)

where

ρi,0=

√
(xs,i − x0)

2
+ (ys,i − y0)

2
+ (zs,i − z0)

2
+ cδr,0

ai,1=
xs,i − x0√

(xs,i − x0)
2
+ (ys,i − y0)

2
+ (zs,i − z0)

2

ai,2=
ys,i − y0√

(xs,i − x0)
2
+ (ys,i − y0)

2
+ (zs,i − z0)

2

ai,3=
zs,i − z0√

(xs,i − x0)
2
+ (ys,i − y0)

2
+ (zs,i − z0)

2
.

(3)
The matrix form of the linearized pseudorange measurement
model with n measurements from two constellations (e.g.,
GPS and BeiDou) can be written as

y = H∆x+ ε , (4)

where

y=



ρ1,0 − ρ1
...

ρk,0 − ρk
ρk+1,0 − ρk+1

...
ρn,0 − ρn


,H =



a1,1 a1,2 a1,3 1 0
...

...
...

...
...

ak,1 ak,2 ak,3 1 0
ak+1,1 ak+1,2 ak+1,3 0 1

...
...

...
...

...
an,1 an,2 an,3 0 1


,

∆x=


x− x0

y − y0
z − z0

−c
(
δGr − δGr,0

)
−c
(
δBr − δBr,0

)

 , ε =



ε1
...
εk

εk+1

...
εn


,

(5)
δGr and δBr are the receiver clock biases regarding the two
constellations, respectively; and δGr,0 and δBr,0 are the corre-
sponding linearized points. The exact forms of H and ∆x
depend on the number of constellations and the ordering of the
pseudorange measurements. (4) and (5) only give an example
of a two-constellation GNSS system without loss of generality.

With n pseudorange measurements, the estimated receiver
position x̂ can be solved by the weighted least square (WLS)
method (in an iterative approach) as follows:

∆x̂=
(
HTWH

)−1
HTWy

x̂=x0 +∆x̂ ,
(6)

where W is the weighting matrix and usually takes the inverse
of the covariance matrix of ε. Here, x̂ standards for the real
time differential (RTD) positioning result since its solution
process uses the DGNSS technique for measurement error
correction.

B. Fault Detection with Gaussian Assumption

The estimated pseudorange measurement error (measure-
ment residual) ε̂ can be formalized by

ε̂=y −H∆x̂

ε̂=(I−P)y ,
(7)
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where

P = H
(
HTWH

)−1
HTW . (8)

The weighted sum of the squared errors (WSSE) can be
constructed as the test statistic [20]

WSSE = ε̂TWε̂ . (9)

In nominal conditions, the pseudorange measurement error εi’s
are modeled to be independent, Gaussian distributed random
variables with zero mean and standard deviation δi, i.e., εi ∼
N
(
0, δi

2
)
. In this condition, WSSE subjects to a chi-squared

distribution with n− 5 degrees of freedom (DOF):

WSSE ∼ χ2(n− 5) . (10)

The chi-squared test is applied to detect potential faults in
the pseudorange measurements. Specifically, if WSSE exceeds
a certain threshold T , a potential fault is claimed, and the
positioning solution is assumed to be unreliable. On the
contrary, if WSSE is below T , the measurements are declared
fault-free, and the positioning solution is assumed to be valid.
The threshold T is selected according to the predefined false
alarm rate α, as shown below:

P (WSSE > T |H0) = α , (11)

where H0 is the fault-free hypothesis.
However, the Gaussian assumption about the pseudorange

measurements may not always hold in real-world applications.
Especially in urban scenarios, the GNSS signals can be af-
fected by various environmental objects, such as high buildings
and trees, which results in the reflection or diffusion of the
GNSS signals, consequently distorting the measurement error
distribution [10], [11]. These impacts have at least two severe
outcomes.

1) The WLS solution relies heavily on the weighting ma-
trix, which is directly related to the covariance of the
measurement error distribution and is usually calibrated
in the open sky condition [20], [30]. The mismatch of the
weighting matrix and the measurement error distribution
can substantially hinder the positioning accuracy in
urban scenarios.

2) The chi-square test assumes that the measurement error
in nominal conditions is Gaussian distributed. However,
the measurement error distribution has been distorted
by surroundings in the urban scenario, which cannot
preserve the Gaussian properties [10]. In such cases,
the test statistic WSSE could be substantially large so
that the chi-squared test claims the existence of faults
even if the pseudorange measurements are free of faults.
Excluding these “faulty” measurements will reduce the
measurement redundancy and cause the geometry to
collapse [37], [38], further decreasing the positioning
accuracy.

Therefore, a comprehensive approach combining adaptive er-
ror modeling and FDE is needed for GNSS positioning in
urban scenarios, as illustrated in the following section.

III. SUBSPACE-BASED ADAPTIVE GMM ERROR MODELING
AND FDE

The proposed method mainly consists of two parts, in-
cluding the adaptive incremental pseudorange error modeling
(AIPEM) algorithm and the adaptive fault detection and ex-
clusion (AdaptiveFDE) algorithm. The fundamental idea is to
adaptively maintain a set of GMM-based pseudorange error
models identified by the elevation angle and carrier-to-noise
ratio (C/N0) and apply them to exclude faulty measurements
and solve positioning results. The main process is depicted
in Figure 1. We first start with a short introduction to the
Gaussian mixture model.

A. Gaussian Mixture Model

The GMM is a valuable statistical tool utilized in error
modeling, especially for modeling heavy-tailed distributions
that are commonly encountered in real-world scenarios [39]–
[41]. It represents a probability distribution by combining
multiple Gaussian components with different weights. The
bimodal Gaussian mixture model (BGMM), a specific type of
GMM, is particularly intriguing as it strikes an optimal balance
between simplicity and flexibility, which offers the ability to
accurately model both the central and extreme values of heavy-
tailed distributions while minimizing the risks associated with
overfitting and excessive parameters [40], [42]. A zero-mean
BGMM can be formalized as

f(x) = p1N
(
x; 0, δ21

)
+ (1− p1)N

(
x; 0, δ22

)
, (12)

where N
(
x; 0, δ21

)
and N

(
x; 0, δ22

)
are the PDF of the first

and the second Gaussian component, δ1 and δ2 the corre-
sponding standard deviations, and p1 and 1 − p1 are the
mixing weight of the two Gaussian components, respectively.
In this work, we use the following expression to represent the
distribution parameter of the zero-mean BGMM in (12):

Θ = {p1, δ1, δ2} . (13)

The estimation of parameters in a GMM can be accomplished
through Maximum Likelihood Estimation (MLE). A widely
used method for obtaining MLE in GMM is utilizing the
expectation–maximization (EM) algorithm [43]. This approach
has garnered widespread popularity owing to its simplicity and
effectiveness in accurately estimating the parameters of the
GMM.

B. Adaptive Incremental Pseudorange Error Modeling

In urban conditions, goGPS is proposed to determine the
uncertainty of GNSS pseudorange measurements based on the
satellite geometry and the signal quality [31]. Specifically, the
pseudorange measurement error is modeled by a Gaussian
distribution, whose covariance is identified as a function of
satellite elevation angle and carrier-to-noise ratio (C/N0).
Given a measurement with the C/N0 and elevation angle
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Fig. 1. Overview of the proposed subspace-based adaptive GMM error modeling and FDE method, which consists of AdaptiveFDE and AIPEM algorithms.

indicated as CN0 and e, respectively, its weight (the inverse
of the covariance) can be calculated as follows [31]:

W (CN0, e) =
1

(sin e)2

(
10−

CN0−s1
a

((
A

10−
s0−s1

a

− 1

)
CN0− s1
s0 − s1

+ 1

))
,

(14)

where the s1 parameter defines the C/N0 value for measure-
ments that are considered “good”, the s0 parameter defines
the C/N0 value for which the function is forced to have the
weight defined by the A parameter, and the a parameter defines
the bending of the curve [31]. However, the error modeling
process is static and primarily based on historical data, which
may not capture the dynamic and diverse characteristics of
urban environments.

Inspired by goGPS, we further proposed the adaptive in-
cremental pseudorange error modeling (AIPEM) method to
dynamically model the distribution of pseudorange error for
real-time positioning systems in urban canyons, as shown in
Algorithm 1. We assume that residuals obtained from the WLS
solution with fault-free measurements (those that pass the chi-
squared test) can represent the pseudorange measurement error
[34]. The AIPEM algorithm can be described in the following
steps:
(1) Initialization of bins based on subspace partition

Assume the step size of C/N0 is ∆λ and the step size of
elevation angle is ∆θ, the GNSS pseudorange measurement
space can be divided into M × N subspaces, each of which
is represented with a bin. M and N represent the number of
C/N0 bins and the number of elevation angle bins, respectively,

and can be calculated by (lines 3-4)

M=
λmax − λmin

∆λ

N=
θmax − θmin

∆θ
,

(15)

where λmax and λmin are the maximum and minimum C/N0
specified by the dataset; θmax and θmin are the maximum and
minimum elevation angle specified by the dataset.

For each bin, we initialize the measurement error distribu-
tion by implementing goGPS with default parameters [31],
which produces a zero-mean Gaussian distribution (line 6).
For example, the initialized error distribution parameter Θ0

i,j

in bin (i, j) is given by

(δ0i,j)
2=

1

W
(
λmin +

1
2 i∆λ, θmin +

1
2j∆θ

)
Θ0

i,j=
{
0.5, δ0i,j , δ

0
i,j

}
,

(16)

where W (·) is defined in (14). In addition, a residual queue
Ri,j is initialized with 2T samples generated from the initial-
ized error model (line 7), where T is the window size.
(2) Association of newly received residual with bins

Assume the measurement residuals at epoch k is

ε̂k =
{
ε̂k1 , ε̂

k
2 , · · · , ε̂kn

}
. (17)

For each residual component, we search the bin set to find
the best-matched bin, which is defined as the bin where the
elevation angle and C/N0 of the residual component fall into
the subspace represented by it (lines 10-12). For example, the
index of the best-matched bin of ε̂k1 is given by

i=argmin
i
|λmin + i∆λ− λ0| ∀i ∈ [1,M ]

j=argmin
j
|θmin + j∆θ − θ0| ∀j ∈ [1, N ] ,

(18)
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Algorithm 1 Adaptive Incremental Pseudorange Error Mod-
eling (AIPEM)
Input:

Step size of C/N0: ∆λ
Step size of elevation angle: ∆θ
Time window: T
Measurement residuals at epoch k: ε̂k =

{
ε̂k1 , ε̂

k
2 , · · · , ε̂kn

}
Output:

Distribution parameters of pseudorange measurement er-
ror at each bin at epoch k: Θk

i,j

1: Initialization (only once):
2: λmax, λmin, θmax, θmin ← Dataset
3: M ← λmax−λmin

∆λ ▷ Num. of C/N0 bins
4: N ← θmax−θmin

∆θ ▷ Num. of Ele bins
5: Ξ = {(i, j) |∀i ∈ [1,M ] , j ∈ [1, N ]} ▷ Indices of bins
6: (δ0i,j)

2 = 1

W(λmin+
1
2 i∆λ,θmin+

1
2 j∆θ)

, ▷ goGPS weighting

Θ0
i,j =

{
0.5, δ0i,j , δ

0
i,j

}
∀ (i, j) ∈ Ξ

7: Ri,j ← 2T samples generated from Θ0
i,j ∀ (i, j) ∈ Ξ
▷ Residual queue

8: ηi,j ← 0 ∀ (i, j) ∈ Ξ ▷ Update flag
9: for s← 1 to n do

10: λ0, θ0 ← The GNSS signal associated with ε̂ks
11: i = argmin

i
|λmin + i∆λ− λ0| ∀i ∈ [1,M ]

12: j = argmin
j
|θmin + j∆θ − θ0| ∀j ∈ [1, N ]

13: Ri,j .push(ε̂ks)
14: ηi,j = 1 ▷ Bin (i, j) is updated
15: end for
16: for each (i, j) ∈ Ξ do
17: if ηi,j ̸= 0 then
18: Θk

i,j ← EM(Ri,j) ▷ Fit GMM with EM
19: else
20: Ri,j .push(2 samples generated from Θk−1

i,j )
▷ Realizaton of incremental update

21: Θk
i,j ← Θk−1

i,j

22: end if
23: Ri,j .pop(out-of-date samples)
24: end for

where λ0 and θ0 is the C/N0 and elevation angle of the
pseudorange measurement associated with ε̂k1 .
(3) Maintenance of residual queue and error model

In each bin, we maintain the residual queue Ri,j by feed-
ing the matched residual (line 13) and then apply the EM
algorithm [43] to fit a zero-mean BGMM distribution for
data in the updated residual queue of the bin (line 18). If
a bin does not receive new residual data, we use the latest
distribution parameter to generate a fixed number of samples
to expand its residual queue (line 20), while the error model
remains unchanged (line 21). This operation ensures the in-
cremental update of the pseudorange error model. Specifically,
the majority of the residual data inherits from the historical
residual distribution, and newly acquired residual data will
only have a limited impact on the overall distribution. As a
result, the update of the residual distribution is guaranteed
to avoid sudden changes or mutations. Moreover, we drop

out-of-date elements in each bin so that the time span of the
queue does not exceed a predefined window size T (line 23).
Specifically, we remove those residuals whose timestamp is
less than k − T , where k is the current epoch.

The AIPEM method can incrementally update the pseudo-
range error distribution with adaptation to the environment,
providing environment-aware information for positioning and
fault detection, which is illustrated in the following section.

C. Adaptive Fault Detection and Exclusion for Real Time
Differential Positioning

Assume the zero-mean BGMM distribution parameter in bin
(i, j) at epoch k is

Θk
i,j =

{
pk1 , δ

k
1 , δ

k
2

}
, (19)

According to the law of total covariance [44], the total variance
of the BGMM Θk

i,j is given by

(δk∗ )
2 = pk1(δ

k
1 )

2 +
(
1− pk1

)
(δk2 )

2 (20)

The total variance reflects the overall uncertainty of the
pseudorange error modeled by GMM, which can be utilized to
adjust the weighting matrix in the WLS solution scheme and
the chi-squared test process. We implement this idea in the
real-time GNSS positioning system in urban canyons and pro-
pose the adaptive fault detection and exclusion (AdaptiveFDE)
algorithm, as shown in Algorithm 2. The AdaptiveFDE algo-
rithm can be described in the following steps:
(1) Construction of weighting matrix

Assume the sth pseudorange measurement at epoch k is ρks ,
and its elevation angle and C/N0 are θs and λs, respectively,
then the associated bin (i, j) of ρks is determined by (lines 4-5)

i=argmin
i
|λmin + i∆λ− λs| (21a)

j=argmin
j
|θmin + j∆θ − θs| . (21b)

By using the distribution parameter Θk−1
i,j in bin (i, j) at

epoch k, we can calculate the error covariance (δs)
2 of the

measurement ρks by employing the law of total covariance (line
6), as shown in (20). Then the inverse of (δs)2 is taken as the
(s, s) element of the weighting matrix (line 7). By performing
the above operation for all pseudorange measurements, we can
obtain the weighting matrix W at epoch k.
(2) Fault detection and exclusion

The weighting matrix W is utilized to calculate the residual
vector ε̂k with (7) and the test statistic WSSEk with (9) at
epoch k (lines 9-10). A chi-squared test is then conducted
to examine whether WSSEk exceeds the predefined threshold
χ2−1

(1− α), where α is the significant level of the chi-
squared test and χ2(·) is the chi-squared distribution.

If the test statistic exceeds the threshold, a sequential
measurement exclusion process is performed. Specifically, we
first calculate the normalized residual vector as follows:

W
1
2 ε̂k . (22)

The index of the absolute maximum element in W
1
2 ε̂k can

be easily found and denoted as s (line 12). Then the sth
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Algorithm 2 Adaptive Fault Detection and Exclusion (Adap-
tiveFDE)
Input:

Step size of C/N0: ∆λ
Step size of elevation angle: ∆θ
Distribution parameters at epoch k − 1: Θk−1

i,j ∀ (i, j) ∈
{(i, j) |∀i ∈ [1,M ] , j ∈ [1, N ]}
Measurements at epoch k: ρk =

{
ρk1 , ρ

k
2 , · · · , ρkn

}
False alarm rate: α

Output:
Positioning solution at epoch k: x̂k

Finalized test statistic at epoch k: WSSEk

1: Initialization: W = In,n
2: for s← 1 to n do
3: λs, θs ← The GNSS signal associated with ρks
4: i = argmin

i
|λmin + i∆λ− λs| ∀i ∈ [1,M ]

5: j = argmin
j
|θmin + j∆θ − θs| ∀j ∈ [1, N ]

6: (δs)
2 ← Equation (20) with Θk−1

i,j

7: ws,s =
1

(δs)2
▷ Set (s, s) element of W

8: end for
9: ε̂k ← Equation (7) with ρk and W

10: WSSEk = ε̂k
T

Wε̂k

11: while WSSEk > χ2−1
(1− α) and |ε̂k| > 5 do

12: s← Index of absolute maximum element in W
1
2 ε̂k

13: Remove sth element of ρk

14: Remove sth row and sth column of W
15: ε̂k ← Equation (1) to (7) with ρk and W
16: WSSEk = ε̂k

T

Wε̂k

17: end while
18: x̂k ← Equation (1) to (6) with ρk and W
19: Execute Algorithm 1 to obtain Θk

i,j with ε̂k

element in ρk is eliminated (line 13) and the sth row and
sth column of W are also eliminated (line 14). Subsequently,
the residual vector and the test statistic are re-calculated
(lines 15-16). Such the process is repeated until either 1)
the test statistic is no larger than the threshold or 2) the
minimum sufficient measurements requirement is no longer
satisfied. In our positioning system, the minimum number of
measurements for implementing WLS is 5 (three unknown
variables associated with position and two unknown variables
associated with the receiver clock bias from two satellite
constellations,i.e., GPS and BeiDou).
(3) Solving position and updating error distribution

The remaining measurements are utilized to solve the GNSS
receiver’s position by WLS (line 18), while the associated
residuals are fed to Algorithm 1 to calculate the distribution
parameter at epoch k (line 19).

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

To examine the performance of the proposed method, we
conducted experiments on two datasets, including the KLT
dataset and the TST dataset. The KLT dataset is collected in
a residual area with low-rise houses, as shown in Fig. 2(a).

TABLE I
THE SETTING OF PARAMETERS ON EACH DATASET

Parameters Value

GNSS constellations GPS, Beidou

C/N0 step ∆λ 2dBHz

Elevation angle step ∆θ 5◦

Time window T 60 s

False alarm rate α 0.05

A surveying vehicle is employed to drive along the designed
track for data collection. Fig. 2(c) shows the setup of the
sensors on the surveying vehicle, where the U-blox Zed F9P
is employed to collect L1 GPS and BEIDOU signals at a
frequency of 1Hz. The ground truth of the receiver position
is provided by a NovAtel SPAN-CPT, a GNSS RTK/inertial
navigation system (INS) integrated navigation system. The
TST dataset is fetched from UrbanNav [45], an open-sourcing
localization dataset. The TST dataset is collected by the EVK-
M8T in an urbanized area in Hong Kong with a limited sky-
view due to the existence of high buildings, as shown in
Fig. 2(b). Similar to the KLT dataset, the ground truth of the
receiver position is provided by NovAtel SPAN-CPT (1Hz).

Fig. 3(a) and (b) plot the distribution of the number of
GNSS signals at each epoch on the two datasets, respectively.
Overall, the number of GNSS signals at each epoch of the
KLT dataset is significantly larger than that of the TST dataset,
with a mean value of 15.88. The primary reason is that the
TST dataset is collected in a medium urban scenario where
high buildings are likely to block some GNSS signals. This
phenomenon is further validated by drawing the quantile-
quantile (QQ) plot of the GNSS pseudorange measurement
error, as shown in Fig. 3(e) and (f). The QQ plot shows
the quantile of error distribution with the equivalent standard
normal quantile, such that Gaussian distributed error data
exhibit a straight line. In these QQ plots, we choose the
pseudorange measurement error with elevation angles ob-
served from 30◦ to 40◦. As can be seen, the measurement
error from both datasets shows a heavy-tailed characteristic,
whereas the measurement error from the TST dataset displays
a more pronounced phenomenon. Being significantly affected
by the surroundings, GNSS signals in the TST dataset can be
refracted and reflected; thereby, their distribution is distorted
and demonstrates the long tail phenomenon. Therefore, it is
reasonable to adopt GMM to characterize error profiles of
pseudorange measurements on these two urban datasets. Fig.
3(c) and (d) show the absolute pseudorange measurement
errors against the elevation angle and C/N0 related to the
receiver on the two datasets, respectively, which helps us to
identify the range of elevation angles and C/N0. The setting
of the step size, time window, and false alarm rate are also
listed in Table I.

B. Performance of Adaptive Error Modeling

On both datasets, we implement the AdaptiveFDE algo-
rithm. We first evaluate the effectiveness of the proposed
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(a) (b) (c)
Fig. 2. The trajectory of the surveying vehicle on (a) the KLT dataset and (b) the TST dataset. (c) The installation of the GNSS receiver on the surveying
vehicle.
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(f)
Fig. 3. The distribution of the number of GNSS signals at each epoch on (a) the KLT dataset and (b) the TST dataset. The absolute pseudorange measurement
errors against the elevation angle and C/N0 related to the receiver on (c) the KLT dataset and (d) the TST dataset. The color bar represents the magnitude of
the absolute error and is plotted in the logarithmic scale. The QQ plot of GNSS pseudorange measurement error for elevation angles observed from 30◦ to
40◦ on (e) the KLT dataset and (f) the TST dataset.

method in the error modeling task. Regarding the KLT dataset,
Fig. 4(a) plots the standard deviation difference between two

Gaussian components against time in each bin. Specifically, we
assume that the 2nd Gaussian component has a larger standard
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deviation than the 1st component without loss of generality.
Therefore, the standard deviation difference in Fig. 4(a) is
defined as the standard deviation of the 2nd Gaussian compo-
nent subtracted from that of the 1st component, consequently
taking a non-negative value. In addition, each row in Fig. 4(a)
corresponds to a bin. The row number k of Bin (i, j) is

k = i ∗ λmax − λmin

∆λ
+ j . (23)

As can be seen, the standard deviation difference in each
bin changes with time, demonstrating the dynamic nature of
our error modeling process. Nevertheless, we observe that the
value in two regions, marked with dashed rectangular, almost
approaches zero, suggesting that errors in these bins have
Gaussian distributions. Since the KLT dataset is collected in
an almost open-sky condition, it is not surprising that some
pseudorange measurement errors can maintain normality.

However, such a phenomenon is rare in the TST dataset,
as shown in Fig. 4(b). The standard deviation difference
in most bins shows a consistently time-varying property.
To examine the adaptability of the proposed algorithm to
changing environments, we choose a specific bin that ex-
hibits significant changing modes for further study, i.e.,
Bin (λ = 28 ∼ 30 dBHz, θ = 40 ∼ 45◦). Fig. 4(c) and Fig.
4(d) plot the distribution parameters of this selected bin against
time. Interestingly, the curve is naturally divided into four parts
by three epochs: tA, tB, and tC. The locations corresponding
to the three epochs are marked in Fig. 2(b). On the left side
of path AB, we observe the presence of tall buildings, while
on the right side is a row of trees. This configuration differs
from the situation prior to point A, where there is no tree near
the left of the path. Assuming that the vehicle on the path AB
is d = 2m far from the trees, we can calculate the minimum
height of trees, hmin, that can block GNSS signals with the
elevation angle of 40 ∼ 45◦ by

hmin = x tan (40 ∗ π/180) = 1.68m . (24)

By and large, the height of trees along the left side of path
AB exceeds hmin; thereby, these trees can substantially affect
the GNSS signals with the elevation angle of 40 ∼ 45◦.
The changes of distribution parameters within tA ∼ tB
coincide with the qualitative analysis, where the standard
deviation of the 2nd component and the associated mixing
weights (1 − p1) increase during this period, which indicates
capturing a heavy-tailed error distribution. The impacts of
trees and high buildings are temporally diminished along the
path BC, which is a wide street. Referring to Fig. 4(c) and
Fig. 4(d), we observe a notable rise in p1 during this period,
while the standard deviations of both components do not
exhibit significant variations. This phenomenon indicates a
reduction in measurement variance, implying that the impact
of the surrounding environment on GNSS signals has gradually
diminished. Upon departing from point C, the vehicle proceeds
onto a narrow street beneath a pedestrian footbridge, as shown
in Fig. 2(b). This footbridge, combined with high buildings
lining the road, significantly affects the GNSS signal, leading
to a considerable increase in measurement uncertainty. Our
adaptive error modeling accurately captures this phenomenon,
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Fig. 4. The difference of standard deviation between two Gaussian compo-
nents, i.e., δ2 − δ1, against time in each bin on (a) the KLT dataset and (b)
the TST dataset. Each row represents a bin. The evolution of (c) standard
deviation and (d) mixture weight parameters of the GMM distribution in the
Bin (λ = 28 ∼ 30 dBHz, θ = 40 ∼ 45◦) on the TST dataset.

as evidenced by a substantial rise in the standard deviations
of both components during this period. Notably, the standard
deviation of the 2nd component surpasses that of the 1st
component, indicating a pronounced heavy-tailed distribution
of the measurement error. The statistics of the computation
time of the error modeling process in both datasets are given
in Appendix B.
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Fig. 5. (a) The finalized test statistic of AdaptiveFDE after excluding all
potential faults on the KLT dataset. (b) The number of excluded measurements
at each epoch on the KLT dataset. (c) The horizontal positioning error of RTD,
GaussianFDE, RobustGMM, AdpRobustGMM, and AdaptiveFDE in the ENU
coordinates on the KLT dataset.

C. Performance of Fault Detection and Positioning

The AdaptiveFDE algorithm utilizes the adaptive error
model to construct the test statistic and conduct the sequential
exclusion of faulty measurements. The finalized test statistic
after fault exclusion on the KLT dataset is plotted against
time in Fig. 5(a). Since the KLT dataset has relatively healthy
measurements, the test statistic remains considerably lower
than the threshold, with faults declaring only at a few specific
timestamps, as shown in Fig. 5(b). In this condition, the
adaptive error modeling mainly benefits the WLS solution by
consistently adjusting weights.

We further compare the positioning accuracy of the pro-
posed AdaptiveFDE method with RTD (Section II-A), Gaus-
sianFDE (Section II-B) [20], robust estimation with GMM

error modeling (RobustGMM) [35], and robust estimation with
adaptive GMM error modeling (AdpRobustGMM) [34]. To
implement RobustGMM, we first calculate and aggregate the
measurement errors in the KLT dataset based on receiver
positions. Then, these aggregated measurement errors are
utilized to fit a two-component GMM, which is regarded as
the nominal error model for robust estimation. Note that all
GNSS measurements share the same nominal error model in
RobustGMM, and this error model would not change with
time. For the AdpRobustGMM, we implement the algorithm
in [34] with the default parameters, where the window size of
residuals is 60 and the number of Gaussian components in the
GMM is 2. Although the error model is adaptively tuned in
AdpRobustGMM with time, all GNSS measurements at each
time epoch share the same error model.

As shown in Fig. 5(c), the positioning error of Adap-
tiveFDE is smaller than the other four methods nearly at
all time epochs. RobustGMM and AdpRobustGMM yield
the largest positioning error, which is even larger than that
of RTD. This is because AdpRobustGMM and RobustGMM
assume that the GNSS measurements obtained from different
satellite-user geometry have the same error distribution, which
is impractical in real-world applications. The GaussianFDE
exhibits a performance that closely resembles that of the
AdaptiveFDE. However, the positioning error of GaussianFDE
is significantly larger than that of AdaptiveFDE during the
period of 35 ∼ 100 s. The thumbnail plot in Fig. 5(c) shows
that the vehicle is almost static during this period, potentially
explaining why AdaptiveFDE has a better positioning per-
formance than GaussianFDE. During this period, the GNSS
signals received by the vehicle’s receiver have a fixed range
of elevation angles since the vehicle’s surroundings, such as
buildings and trees, are unchanging. Therefore, a specific set of
bins in the AIPEM algorithm can consistently obtain residual
data, gradually adjusting their error model to describe the
environmental effects on the pseudorange measurements. As
a result, the AdaptiveFDE algorithm can adopt more suitable
weights than the GaussianFDE algorithm, demonstrating sig-
nificantly lower positioning error during this period.

It is also important to analyze the performance of Adap-
tiveFDE outside this period. Before 35 s, the bins in the
AIPEM algorithm have not collected enough residual data to
describe the heavy-tailed properties of the measurement errors;
therefore, the AdaptiveFDE takes almost the same weights as
the GaussianFDE during this period, showing no difference
in the positioning errors. The performance of AdaptiveFDE is
almost the same as GaussianFDE after 100 s, which is similar
to the case before 35 s; However, the underlying rationale
behind this similarity differs. After 100 s, the vehicle travels
along a street in a low-rise residential area, where the heights
of the houses are fairly uniform. During this movement,
each bin is unlikely to acquire sufficient data to characterize
the subtle variations in the impact of the surroundings on
GNSS signals. Therefore, the error model in most bins is
unaltered and retains the distribution parameter initialized by
goGPS. As a result, the positioning error of AdaptiveFDE
closely approximates that of GaussianFDE. Table II lists the
mean positioning error of RTD, GaussianFDE, RobustGMM,
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AdpRobustGMM and AdaptiveFDE. As can be seen, the value
of AdaptiveFDE is only 2.14m, which is around 16% smaller
than that of GaussianFDE.

TABLE II
THE MEAN ABSOLUTE HORIZONTAL POSITIONING ERROR

Methods KLT Dataset TST Dataset

RTD 2.60m 12.58m

GaussianFDE 2.55m 9.67m

RobustGMM 3.62m 17.43m

AdpRobustGMM 3.62m 17.44m

AdaptiveFDE 2.14 m 8.79 m

Regarding the TST dataset, we plot its finalized test statistic
after fault exclusion in Fig. 6(a), which shows a different
mode to that of the KLT dataset. Since the TST dataset is
collected in the medium urban scenario, the GNSS pseu-
dorange measurement can be severely affected by the sur-
roundings and consists of considerable faults. In this case,
the AdaptiveFDE algorithm demonstrates its ability to de-
tect and exclude potential faults, as suggested by Fig. 6(b).
When all faults are excluded, the finalized test statistic is
moderately smaller than the threshold. Fig. 6(c) plots the
trajectory of the positioning results of RTD, GaussianFDE,
RobustGMM, AdpRobustGMM, and AdaptiveFDE, while the
ground truth (GT) is also plotted in this figure. Compared
to RTD, RobustGMM, and AdpRobustGMM, which do not
apply fault detection and exclusion, AdaptiveFDE produces
a smoother positioning trajectory with smaller positioning
errors. However, GaussianFDE also demonstrates compara-
tive performance in positioning. To compare GaussianFDE
and AdaptiveFDE, we calculate the difference of horizontal
positioning error between AdaptiveFDE and GaussianFDE in
the east-north-up (ENU) coordinates and plot it against time in
Fig. 6(d), where the negative value indicates that AdaptiveFDE
has a smaller positioning error than GaussianFDE. As can be
seen, AdaptiveFDE exhibits smaller positioning errors than
GaussianFDE most of the time. A quantitative comparison is
given in Table II that the mean absolute horizontal positioning
error of AdaptiveFDE is only 8.79m, while this figure of
GaussianFDE, RobustGMM, and AdpRobustGMM is 9.66m,
17.43m, and 17.44m, respectively. By incorporating adaptive
error modeling in both the weighted least squares (WLS) and
fault detection and exclusion processes, AdaptiveFDE achieves
a notable 9% reduction in positioning error compared to
GaussianFDE. Indeed, the improvement in positioning per-
formance can partially be attributed to the effects of FDE
on measurement error distribution. Due to the existence of
unmodelled errors in measurements, the distribution of mea-
surement error tends to be biased and has heavy tails. By
applying fault detection and exclusion, we can improve the
consistency between measurements and refine the bias and
heavy tail issues in the error distribution. The effects of FDE
on measurement error distribution are discussed in Appendix
A.
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Fig. 6. (a) The finalized test statistic of AdaptiveFDE after excluding all
potential faults on the TST dataset. (b) The number of excluded measurements
at each epoch on the TST dataset. (c) The trajectory of the positioning results
of RTD, GaussianFDE, RobustGMM, AdpRobustGMM, and AdaptiveFDE on
the TST dataset. (d) The difference in horizontal positioning error between
AdaptiveFDE and GaussianFDE in the ENU coordinates on the TST dataset.
The shaded area indicates that AdaptiveFDE has a smaller positioning error
than GaussianFDE.
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Fig. 7. The change of mean and maximum horizontal positioning error relative to the benchmark against the step size of (a) elevation angle and (b) C/N0.
The benchmark is marked with a red dot. The evolution of the average number of received residuals in each bin against the step size of (c) elevation angle
and (d) C/N0. All experiments are conducted in the TST dataset.

V. DISCUSSION

A. Impacts of Step Size
In the proposed AdaptiveFDE and AIPEM algorithm, users

need to specify the step size of elevation angle ∆θ and the step
size of C/N0 ∆λ for partitioning data bins. To examine their
effects on positioning performance, we conducted controlled
experiments on the TST dataset. Specifically, we set the value
of ∆θ to 3◦, 7◦, 9◦, 11◦, 13◦, and 15◦ while keeping all other
parameters consistent with Table I. We calculate the change
in mean and maximum positioning error for each setting
relative to the benchmark (∆θ = 5◦) and plot the results
in Fig. 7(a), where a positive value indicates the increase in
positioning error compared to the benchmark (marked with a
red dot). Obviously, the maximum positioning error increases
with the step size of elevation angle, implying that the error
distribution is notably affected by the elevation angle. If
we employ a larger elevation angle step size for the bin’s
partition, the collected residual data in each bin would exhibit
greater heterogeneity, which hinders the effectiveness of error
modeling.

The increase in the step size of elevation angle also has a
negative impact on the overall positioning performance. How-
ever, this negative effect is partially offset by the additional
benefits, i.e., increased number of received residuals per unit
time, that come with increasing the step size. Fig. 7(c) plots the
evolution of the average number of received residuals in each
bin against the step size of elevation angle. With the increase
in step size, the average number of received residuals in each
bin per unit time significantly increases. Each bin will have
more residual samples for error modeling, which is beneficial
for capturing the common pattern inside the data. Therefore, it
is observed that the mean positioning error does not experience

a sudden increase but instead fluctuates within the range of 0
to 20% when the step size of the elevation angle increases,
as shown in Fig. 7(a). Nevertheless, we recommend using a
relatively small step size of elevation angle. In this case, 5◦ is
the optimal choice, which balances the positioning error and
the data availability within each bin.

Regarding the impacts of C/N0 step size, we compare the
settings of 3 dBHz, 4 dBHz, 5 dBHz, 6 dBHz, 7 dBHz, and
8 dBHz with the benchmark (2 dBHz). As shown in 7(b),
both the mean and maximum positioning error fluctuate within
the range of −10% to 10% with the increase of C/N0 step
size from 2 dBHz to 6 dBHz. This phenomenon is quite anti-
intuitive since C/N0 is always thought to be an indicator to
justify the quality of GNSS signals. However, considering that
the TST dataset is collected in the medium urban scenario, the
impacts of surroundings on C/N0 are quite complex. Apart
from the reflection and obstruction by buildings, atmospheric
conditions and radio frequency interference (RFI) can also
cause substantial impacts on C/N0. It is likely that a nonlinear
relationship exists between C/N0 and the patterns in GNSS
pseudorange measurement errors. Since adjusting the C/N0
step size is a linear operation, it may have limited effect in
separating various patterns within the error data. However,
when the C/N0 step size is larger than 6 dBHz, a downward
trend in the mean positioning error becomes apparent as the
step size increases. Enlarging the C/N0 step size increases
the average number of received residuals within each bin per
unit time, as shown in Fig. 7(d). As the level of elevation
angle specified by each bin remains constant regardless of the
change in C/N0 step size, the augmented samples obtained
by applying large C/N0 step size help identify the common
patterns within the error data regarding the elevation angle.
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Consequently, the mean positioning error decreases. Interest-
ingly, the maximum positioning error increases during this
interval, indicating that the influence of C/N0 step size is not
negligible. Further investigation is required to understand the
impacts of C/N0 step size. In this case, we recommend using
4 dBHz as C/N0 step size to balance the mean and maximum
positioning error.

B. Impacts of Time Window

In the AIPEM algorithm, time window T determines the
length of the residual queue, which determines the memory
size of history information. Fig. 8 plots the impacts of time
window on the positioning performance. Similar to the ex-
periments in Section V-A, we keep all parameters, expect
time window, the same as the benchmark in Table I, and
implement the AdaptiveFDE on the TST dataset with different
settings of time window. As suggested by Fig. 8, the maximum
positioning error exhibits an upward trend as the window size
increases, implying that a long time window can impede the
sensitivity of the error modeling algorithm to environment
changes. Nevertheless, the mean positioning error is relatively
stable across all settings of time window. This can be explained
by the “average effects” of a long time window. Although a
longer time window may not respond immediately to sudden
environmental changes, its ability to maintain a large amount
of historical data allows for a smoother update of the error
model. This results in a more generalized error model, leading
to competitive performance regarding mean positioning error.
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Fig. 8. The change of mean and maximum horizontal positioning error relative
to the benchmark (the red dot) against the time window on the TST dataset.

VI. CONCLUSION

In this work, we propose the subspace-based adaptive GMM
error modeling and FDE method for GNSS positioning in
urban canyons. This method adaptively maintains a set of
pseudorange error models identified by the elevation angle and
carrier-to-noise ratio (C/N0), which are employed to construct
the fault detection and exclusion process and determine the
positioning solution. Specifically, we propose the adaptive
incremental pseudorange error modeling (AIPEM) algorithm
to dynamically model the distribution of pseudorange error for
real-time positioning systems in urban scenarios. Based on the
adaptive error model, we further propose the adaptive fault
detection and exclusion (AdaptiveFDE) algorithm for RTD
positioning to dynamically adjust the weighting matrix in the
FDE process and the WLS solution scheme.

The performance of the proposed method is evaluated on
two urban datasets, including the KLT dataset representing
slightly urbanized environments and the TST dataset repre-
senting a medium urbanized scenario. Results show that the
evolution of error models has a strong relationship with sur-
roundings, suggesting that the proposed method has the ability
to sense environmental changes. In addition, compared to the
conventional FDE method with Gaussian assumptions, the
mean positioning error is reduced by 16% and 9% in the KLT
dataset and the TST dataset, respectively, showing the power
of adaptive error modeling in enhancing positioning accuracy.
We further discuss the impact of step size (elevation angle
and C/N0) and time window parameters of two algorithms on
positioning with controlled experiments, providing practical
guidelines for GNSS positioning in urban environments.

This study has several limitations, which also point out
future research directions. In constructing the AIPEM al-
gorithm, we limit the error model to the zero-mean GMM
distribution for simplicity. However, the multipath and NLOS
effect caused by urban environments could have complex
impacts on GNSS measurements, making the error distribution
biased and multimodal. Future research can adopt biased
GMM distribution with more components to establish a more
accurate error model. Moreover, the AIPEM algorithm is built
upon the assumption that the measurement set is dominated by
healthy measurements. If the measurement set is dominated by
unhealthy measurements, the adaptive error modeling process
will be considerably affected. Future work should integrate
additional sensors, such as the fisheye camera, to identify the
number of unhealthy measurements and provide information
on adjusting the error model. In addition, the initialization of
error models is realized by goGPS weighting, which produces
the same initial error profile in scenarios with different degrees
of urbanization. To expedite the adaptation of error models to
different environments, future research could employ informed
initialization based on environmental context. One potential
solution is to introduce environmental classifiers, such as ma-
chine learning models, to enhance the accuracy and efficiency
of the initialization process.

APPENDIX A
EFFECTS OF FAULT DETECTION AND EXCLUSION ON

MEASUREMENT ERROR DISTRIBUTION

Due to the existence of unmodelled errors in measurements,
the distribution of measurement error tends to be biased and
has heavy tails. By applying fault detection and exclusion,
we can improve the consistency between measurements and
refine the bias and heavy tail issues in the error distribution.
By adaptively modeling the measurement error after exclusion,
we can capture the impacts of changing environments on the
measurements, which also benefits the positioning solution.

In this appendix, we show the effects of fault detection and
exclusion on measurement error distribution by conducting an
additional experiment on the TST dataset. Specifically, we aim
to examine the change in the tailedness and asymmetry of
the error distribution before and after FDE. The kurtosis is
commonly used to quantify the tailedness of a distribution
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[44]. The kurtosis of the distribution of the random variable
X is defined as the fourth standardized moment as follows:

Kurt(X) = E
(
X − µ

σ

)4

, (25)

where µ is the mean of X , and σ is the standard deviation
of X . A large kurtosis value indicates the existence of heavy
tails. In addition, the skewness is commonly used to quantify
the asymmetry of a distribution [44]. The kurtosis of the
distribution of X is defined as the third standardized moment
as follows:

Skew(X) = E
(
X − µ

σ

)3

. (26)
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Fig. 9. (a) The kurtosis and (b) the skewness of the measurement error
distribution in each bin.

A large magnitude of the skewness indicates the asymmetry
of a distribution. In the TST dataset, we record the mea-
surements before applying FDE (the raw measurement set)
and the remaining measurements after FDE (the remaining
measurement set) for each bin. We use the ground truth
position of the receiver to calculate the measurement error in
each set, based on which we can obtain the error distribution
without and with FDE. We calculate the kurtosis and skewness
of the error distribution without and with FDE and plot the

results in Fig. 9. As can be seen, the FDE process can
reduce the kurtosis and the absolute value of skewness of
error distribution nearly in all bins. Fig. 10(a) shows the error
distribution in the Bin (λ = 38 ∼ 40 dBHz, θ = 30 ∼ 35◦).
It is obvious that the FDE process eliminates large error
terms (> 10m) in the raw error distribution, which improves
the consistency of measurements. In statistics, the kurtosis
of the error distribution is reduced from 5.65 to 2.44 (a
56.81% reduction) while the skewness is reduced from 1.79
to 0.75 (a 58.10% reduction). Similar results are found
in the Bin (λ = 34 ∼ 36 dBHz, θ = 45 ∼ 50◦) in Fig. 10(b),
where the kurtosis and skewness are reduced by 93.17% and
94.31%, respectively. Therefore, the FDE process can alleviate
the tailedness and bias problem in the measurement error
distribution in urban scenarios.

(a)

(b)
Fig. 10. (a) The distribution of measurement error in the
Bin (λ = 38 ∼ 40 dBHz, θ = 30 ∼ 35◦). When no exclusion is applied,
the kurtosis is 5.65 and the skewness is 1.79); When exclusion is applied,
the kurtosis is 2.44 and the skewness is 0.75). (b) The distribution of
measurement error in the Bin (λ = 34 ∼ 36 dBHz, θ = 45 ∼ 50◦). When
no exclusion is applied, the kurtosis is 39.23 and the skewness is 4.92; When
exclusion is applied, the kurtosis is 2.68 and the skewness is 0.28.
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APPENDIX B
COMPUTATION LOAD IN ERROR MODELING PROCESS
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Fig. 11. The box plot of the computation time of the error modeling process
in the KLT and TST datasets. All computations are conducted on a laptop
(Intel Core i7-12700H CPU, 2.30 GHz).
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[7] F. Pomerleau, P. Krüsi, F. Colas, P. Furgale, and R. Siegwart, “Long-
term 3D map maintenance in dynamic environments,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 3712–3719.

[8] C. Zhang, Z. Huang, M. H. Ang, and D. Rus, “Lidar degradation
quantification for autonomous driving in rain,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 3458–3464.

[9] J. R. V. Rivero, T. Gerbich, B. Buschardt, and J. Chen, “The effect of
spray water on an automotive LiDAR sensor: A real-time simulation
study,” IEEE Trans. Intell. Veh., vol. 7, no. 1, pp. 57–72, 2021.

[10] N. Zhu, J. Marais, D. Bétaille, and M. Berbineau, “GNSS position
integrity in urban environments: A review of literature,” IEEE Trans.
Intell. Transp. Syst., vol. 19, no. 9, pp. 2762–2778, 2018.

[11] L.-T. Hsu, “Analysis and modeling GPS NLOS effect in highly urbanized
area,” GPS Solut., vol. 22, no. 1, p. 7, 2018.

[12] Z. Gao, S. X. Ding, and C. Cecati, “Real-time fault diagnosis and fault-
tolerant control,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3752–
3756, 2015.

[13] J. Blanch, T. Walter, P. Enge, Y. Lee, B. Pervan, M. Rippl, and
A. Spletter, “Advanced RAIM user algorithm description: Integrity
support message processing, fault detection, exclusion, and protection
level calculation,” in Proc. 25th Int. Tech. Meeting Satell. Division Inst.
Navigat., Nashville, TN, Sep. 2012, pp. 2828–2849.

[14] B. W. Parkinson and P. Axelrad, “Autonomous GPS Integrity Monitoring
Using the Pseudorange Residual,” Navig. J. Inst. Navig., vol. 35, no. 2,
pp. 255–274, Jun. 1988.

[15] R. G. Brown, “A baseline GPS RAIM scheme and a note on the
equivalence of three RAIM methods,” Navig. J. Inst. Navig., vol. 39,
no. 3, pp. 301–316, 1992.

[16] M. Joerger and B. Pervan, “Fault detection and exclusion using solution
separation and chi-squared ARAIM,” IEEE Trans. Aerosp. Electron.
Syst., vol. 52, no. 2, pp. 726–742, Apr. 2016.

[17] FAA, “Phase II of the GNSS evolutionary architecture study,” Federal
Aviation Administration, Tech. Rep., 2010.

[18] L.-T. Hsu, H. Tokura, N. Kubo, Y. Gu, and S. Kamijo, “Multiple faulty
GNSS measurement exclusion based on consistency check in urban
canyons,” IEEE Sens. J., vol. 17, no. 6, pp. 1909–1917, 2017.

[19] M. A. Sturza, “Navigation system integrity monitoring using redundant
measurements,” NAVIGATION, vol. 35, no. 4, pp. 483–501, 1988.

[20] T. Walter and P. Enge, “Weighted RAIM for precision approach,” in
Proc. 8th Int. Tech. Meeting Satell. Division Inst. Navigat., Palm Springs,
CA, Sep. 1995, pp. 1995–2004.

[21] R. G. Brown and P. W. McBurney, “Self-contained GPS integrity check
using maximum solution separation,” Navig. J. Inst. Navig., vol. 35,
no. 1, pp. 41–53, 1988.

[22] X. Niu, Q. Chen, Q. Zhang, H. Zhang, J. Niu, K. Chen, C. Shi, and
J. Liu, “Using Allan variance to analyze the error characteristics of
GNSS positioning,” GPS Solutions, vol. 18, no. 2, pp. 231–242, 2014.

[23] R. Braff and C. Shively, “A method of over bounding ground based
augmentation system (GBAS) heavy tail error distributions,” J. Navig.,
vol. 58, no. 1, pp. 83–103, 2005.

[24] P. Yan, W. Wen, F. Huang, and L.-T. Hsu, “A fault detection algorithm
for lidar/imu integrated localization systems with non-gaussian noises,”
in Proceedings of the 2024 International Technical Meeting of The
Institute of Navigation, 2024, pp. 561–574.

[25] E. Wang, C. Jia, G. Tong, P. Qu, X. Lan, and T. Pang, “Fault detection
and isolation in GPS receiver autonomous integrity monitoring based on
chaos particle swarm optimization-particle filter algorithm,” Advances in
Space Research, vol. 61, no. 5, pp. 1260–1272, 2018.

[26] P. He, G. Liu, C. Tan, and Y.-e. Lu, “Nonlinear fault detection threshold
optimization method for RAIM algorithm using a heuristic approach,”
GPS Solutions, vol. 20, pp. 863–875, 2016.

[27] C. Zhang, C. Cao, C. Guo, T. Li, and M. Guo, “Navigation multisen-
sor fault diagnosis approach for an unmanned surface vessel adopted
particle-filter method,” IEEE Sensors Journal, vol. 21, no. 23, pp.
27 093–27 105, 2021.

[28] J. Wang, C. Xu, M. Shi, and Z. Lu, “Protection level for precise
point positioning based on Gaussian mixture model,” in China Satellite
Navigation Conference. Springer, 2022, pp. 45–55.

[29] Y. Yun, H. Yun, D. Kim, and C. Kee, “A Gaussian sum filter approach
for DGNSS integrity monitoring,” The Journal of Navigation, vol. 61,
no. 4, pp. 687–703, 2008.

[30] J. Blanch, T. Walker, P. Enge, Y. Lee, B. Pervan, M. Rippl, A. Spletter,
and V. Kropp, “Baseline advanced RAIM user algorithm and possible
improvements,” IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 1, pp.
713–732, 2015.

[31] A. M. Herrera, H. F. Suhandri, E. Realini, M. Reguzzoni, and M. C.
de Lacy, “goGPS: open-source MATLAB software,” GPS Solut., vol. 20,
pp. 595–603, 2016.

[32] X. Liu, W. Wen, and L.-T. Hsu, “GLIO: Tightly-coupled
GNSS/LiDAR/IMU integration for continuous and drift-free state
estimation of intelligent vehicles in urban areas,” IEEE Trans. Intell.
Veh., 2023.

[33] A. Chalvatzaras, I. Pratikakis, and A. A. Amanatiadis, “A survey on map-
based localization techniques for autonomous vehicles,” IEEE Trans.
Intell. Veh., vol. 8, no. 2, pp. 1574–1596, 2022.

[34] T. Pfeifer and P. Protzel, “Expectation-maximization for adaptive mix-
ture models in graph optimization,” in 2019 international conference on
robotics and automation (ICRA). IEEE, 2019, pp. 3151–3157.

[35] D. M. Rosen, M. Kaess, and J. J. Leonard, “Robust incremental online
inference over sparse factor graphs: Beyond the Gaussian case,” in 2013
IEEE International Conference on Robotics and Automation. IEEE,
2013, pp. 1025–1032.

[36] T. Takasu and A. Yasuda, “Development of the low-cost RTK-GPS
receiver with an open source program package RTKLIB,” in Proc. Int.
Symp. GPS/GNSS, vol. 1. International Convention Center Jeju Korea
Seogwipo-si, Republic of Korea, 2009, pp. 1–6.

[37] A. El-Mowafy, B. Xu, and L.-T. Hsu, “Integrity monitoring using multi-
GNSS pseudorange observations in the urban environment combining
ARAIM and 3D city models,” Journal of Spatial Science, vol. 67, no. 1,
pp. 91–110, 2022.



JOURNAL OF LATEX CLASS FILES 16

[38] X. Xia, L.-T. Hsu, and W. Wen, “Integrity-constrained factor graph op-
timization for GNSS positioning,” in Proc. IEEE/ION Position Location
Navigation Symp. IEEE, 2023, pp. 414–420.

[39] T. Walter, K. Gunning, R. Eric Phelts, and J. Blanch, “Validation of
the unfaulted error bounds for ARAIM,” Navig. J. Inst. Navig., vol. 65,
no. 1, pp. 117–133, 2018.

[40] J. Blanch, T. Walter, and P. Enge, “Position error bound calculation
for GNSS using measurement residuals,” IEEE Trans. Aerosp. Electron.
Syst., vol. 44, no. 3, pp. 977–984, Jul. 2008.

[41] Y. Yun, H. Yun, D. Kim, and C. Kee, “A Gaussian sum filter approach
for DGNSS integrity monitoring,” J. Navig., vol. 61, no. 4, pp. 687–703,
2008.

[42] J. Lee, “Laas position domain monitor analysis and test results for CAT
II/III operations,” in Proc. 17th Int. Tech. Meeting Satell. Division Inst.
Navigat., Long Beach, CA, Sep. 2004, pp. 2786–2796.

[43] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. R. Stat. Soc. B, vol. 39,
no. 1, pp. 1–22, Sep. 1977.

[44] N. Weiss, P. Holmes, and M. Hardy, A Course in Probability. Pearson
Addison Wesley, 2006.

[45] L.-T. Hsu, F. Huang, H.-F. Ng, G. Zhang, Y. Zhong, X. Bai, and
W. Wen, “Hong Kong UrbanNav: An open-source multisensory dataset
for benchmarking urban navigation algorithms,” Navig. J. Inst. Navig.,
vol. 70, no. 4, 2023.

Penggao Yan received the bachelor’s degree in
Communication Engineering in 2018 and the mas-
ter’s degree in Pattern Recognition and Intelligent
Systems in 2021, both from Wuhan University,
China. He is currently a Ph.D. Candidate at the
Department of Aeronautical and Aviation Engineer-
ing, Faculty of Engineering, Hong Kong Polytechnic
University.

His research interests include non-Gaussian noise
modeling, fault detection and integrity monitoring in
localization systems, and control-aided localization.

Xiao Xia received his B.Sc. degree in Vehicle
Engineering from Beijing Institute of Technology,
China in 2018. and M.Sc. degree in Automation En-
gineering from RWTH, Aachen University, Germany
in 2021. He is currently pursuing a Ph.D. degree
at the Department of Aeronautical and Aviation
Engineering, Faculty of Engineering, Hong Kong
Polytechnic University.

His research interests include integrity monitoring
for safety-certificated localization solutions, varia-
tional inference, robust estimation, and constrained

optimization.

Michele Brizzi (Member, IEEE) is a post-doc re-
searcher at the Department of Industrial, Electronic
and Mechanical Engineering, Roma Tre University.
He received the B.Sc. in Electronic Engineering, the
M.Sc. in Information and Communication Technol-
ogy Engineering, and his Ph.D. in Applied Electron-
ics from Roma Tre University in 2016, 2018, and
2022, respectively.

His main research interests are in the field of
computer vision, sensor fusion, and navigation al-
gorithms for autonomous vehicles.

Weisong Wen (Member, IEEE) received a BEng de-
gree in Mechanical Engineering from Beijing Infor-
mation Science and Technology University (BISTU),
Beijing, China, in 2015, and an MEng degree in
Mechanical Engineering from the China Agricultural
University, in 2017. After that, he received a Ph.D.
degree in mechanical engineering, the Hong Kong
Polytechnic University. He was a visiting student
researcher at the University of California, Berkeley
(UCB) in 2018. He is currently an assistant professor
in the Department of Aeronautical and Aviation

Engineering, the Hong Kong Polytechnic University.
His research interests include multi-sensor integrated localization for au-

tonomous vehicles, SLAM, and GNSS positioning in urban canyons.

Li-Ta Hsu (Senior Member, IEEE) received the B.S.
and Ph.D. degrees in aeronautics and astronautics
from National Cheng Kung University, Taiwan, in
2007 and 2013, respectively. He is currently an as-
sociate professor at the Department of Aeronautical
and Aviation Engineering, Faculty of Engineering,
Hong Kong Polytechnic University, before he served
as a post-doctoral researcher in Institute of Industrial
Science at University of Tokyo, Japan. In 2012, he
was a visiting scholar in University College London,
U.K. He is an Associate Fellow of RIN.

His research interests include GNSS positioning in challenging environ-
ments and localization for pedestrians, autonomous driving vehicles, and
unmanned aerial vehicles.

View publication stats

https://www.researchgate.net/publication/383444449

	Introduction
	Fault Detection with Gaussian error modeling
	Weighted Least Square Estimation in GNSS
	Fault Detection with Gaussian Assumption

	Subspace-based adaptive GMM error modeling and FDE
	Gaussian Mixture Model
	Adaptive Incremental Pseudorange Error Modeling
	Adaptive Fault Detection and Exclusion for Real Time Differential Positioning

	Experimental results
	Experiment Setup
	Performance of Adaptive Error Modeling
	Performance of Fault Detection and Positioning

	Discussion
	Impacts of Step Size
	Impacts of Time Window

	Conclusion
	Appendix A: Effects of fault detection and exclusion on measurement error distribution
	Appendix B: Computation load in error modeling process
	References
	Biographies
	Penggao Yan
	Xiao Xia
	Michele Brizzi
	Weisong Wen
	Li-Ta Hsu


