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Abstract— A sharp yet conservative overbound for heavy-tailed
error distributions is essential in integrity monitoring applications
due to availability and continuity constraints. This paper proposes
the Principal Gaussian overbound (PGO) for heavy-tailed error
distributions by leveraging the characteristics of the Gaussian
mixture model. The overbounding property of the PGO is proved to
be preserved through convolution, which makes it possible to derive
pseudorange-level requirements from the position domain integrity
requirements. Experimental results on two datasets show that the
PGO provides the most competitive bounding performance for
heavy-tailed differential global navigation satellite system (DGNSS)
pseudorange errors when compared to the two-step Gaussian over-
bound and Gaussian-Pareto overbound, yielding a sharp bound in
both the core and tail parts of the error distribution. The proposed
method reduces the mean vertical protection level (VPL) by more
than 78% compared to the two-step Gaussian overbounding method
on the urban dataset. In addition, the mean computation time
of VPL is only 0.08 s with fifteen measurements by employing
fast Fourier transforms, suggesting the substantial potential of
the PGO in GNSS applications with strict integrity and real-time
requirements. Furthermore, the feasibility of the PGO in fault
detection is discussed.

Index Terms—Bounding methods, Gaussian mixture model,
Heavy-tailed error distribution, Integrity analysis, Global naviga-
tion satellite system, Fast Fourier transforms

I. INTRODUCTION

Safety-of-life systems, such as satellite-based aug-
mentation systems (SBAS), ground-based augmentation
systems (GBAS), and receiver autonomous integrity mon-
itoring (RAIM), have become increasingly important in
modern aviation to ensure the safety and reliability of
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navigation systems [1]–[3]. These systems are designed
to provide integrity-assured position solutions to global
navigation satellite system (GNSS) users and typically
require a low integrity risk, which is the probability of
a hazardously misleading information (HMI) event [4].
To achieve this, the position error distribution should be
characterized to derive the protection level (PL), which
serves as the maximum error bound applicable to the
position solution to ensure that the integrity risk is below
a specified threshold [5].

To meet the stringent navigation requirements, precise
modeling of the error distribution using experimental data
is essential, where the most challenging aspect of this
task lies in accurately capturing and modeling the tail
distribution [4], [6], [7]. Due to the relatively diminished
probability of tail observations, a huge amount of data is
needed to precisely characterize the tail distribution [7].
In addition, it is not a trivial task to account for heavy
tails and other irregularities in the range error distribution,
which may vary depending on satellite azimuth, satellite
elevation, receiver hardware, terrain, and season [8]. To
address this issue, a conservative representation of the
error distribution known as the overbound is employed.
The overbound represents the worst possible error dis-
tribution in the absence of a hardware fault [8], [9]. In
general, there are three constraints on overbounding. The
first constraint originates from the integrity requirement
in the position domain. The overbound of the positioning
error, which is derived from the overbounds on the range-
domain error, should have a larger probability beyond
the PL than the actual positioning error, indicating the
conservative of the overbound in both the range and
position domains [8]. Second, a sharp overbound that
closely resembles the shape of the actual error distri-
bution while remaining conservative is favored due to
the availability and continuity constraints [8]. Finally, a
simple, parameterized form of the overbound is essential
to support limited-bandwidth communication and rapid
PL computation [10].

The first true overbound, known as the cumulative
distribution function (CDF) overbound, was introduced by
DeCleene in 2000 [9]. It is defined as having more tail
mass than the error distribution. To facilitate the range-
to-position projection and simplify the communication
and computation of error bounds, the zero-mean Gaus-
sian model is adopted as the underly form of the CDF
overbound. Since then, the Gaussian CDF overbound and
its variants have dominated the overbounding research and
are taken as the basis for integrity analysis. Nevertheless,
DeCleene’s method requires certain shape constraints on
the overbounding distribution, including symmetric and
unimodality. To relax these constraints, Rife et al. pro-
posed the paired CDF overbound that uses two Gaussian
distributions with non-zero mean to overbound the left
and right regions separately [11]. However, its stringent
requirement on bounding both regions inflates the stan-
dard deviation or enlarges the biases in the Gaussian
overbound [10]. This problem is relieved by allowing the
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total mass of the overbound distribution to be greater than
one, which is known as the excess-mass CDF (EMC)
overbound [5]. More recently, Blanch et al. proposed
the two-step Gaussian overbounding method, significantly
reducing the bias in the overbound distribution [10].
Nonetheless, these Gaussian-based overbounding methods
fail to truly overbound the heavy-tailed distributions, a
frequent occurrence in pseudorange errors influenced by
multipath [7]. This is because heavy-tailed distributions
have tails that are not exponentially bounded, which
makes them impossible to be overbounded by a Gaussian
distribution that only possesses an exponential tail [4], [8].
It is natural to apply different models for the core and tail
regions of a distribution. Rife et al. proposed the Gaussian
core overbound, which utilizes a Gaussian distribution
for the core bounding and an implicit distribution for the
tail bounding [8]. More recently, Larson et al. proposed
the Gaussian-Pareto overbound to tightly bound the tails
by utilizing the extreme value theory [4]. However, the
overbounding property of the Gaussian-Pareto overbound
through convolution remains unclear, which currently
limits its applications.

In addition to Gaussian or semi-Gaussian overbound-
ing methods, researchers have developed non-Gaussian
overbounding methods by exploiting the properties of
non-Gaussian models in modeling heavy-tailed distribu-
tions [12]–[14]. For example, Xue et al. utilized the
stable distribution to model the GBAS ranging error and
derived the analytical equation of PLs [14]. Blanch et
al. constructed a bimodal Gaussian mixture model for
modeling the pseudorange error in the worst case and
presented the numerical method for the range-to-position
projection [12]. Rife et al. proposed the Gaussian Core
Gaussian Sidelobes (GCGS) bound, which uses several
equal-variance Gaussian components to model the heavy
tails of the error distribution [8]. Although the GCGS
bound is formalized as the convolution of a single Gaus-
sian distribution with a set of delta functions, the GCGS
bound is indeed a GMM. Gao et al. also utilized the
Gaussian mixture model to characterize the ionosphere
free based range errors of GBAS [15]. Although these
methods have shown great potential in tightly bounding
heavy-tailed distributions, the parameters of the non-
Gaussian distribution are identified either through worst-
case analysis or sample fitting. These approaches cannot
rigorously determine the least conservative overbound of
the error distribution.

In this work, we propose the Principal Gaussian
overbound (PGO) for heavy-tailed error distribution based
on the Gaussian mixture model. Specifically, the bimodal
Gaussian mixture model (BGMM) is employed to fit the
error distribution based on the expectation-maximization
algorithm [16]. A partition strategy based on the analysis
of BGMM membership weight is proposed, which divides
the BGMM into the core and tail regions. Within each
region, one of the Gaussian components in the BGMM
holds a dominant position, and a CDF overbound is
constructed based on the dominant Gaussian component.

The PGO is named based on the nature of the over-
bounding process. A sigma inflation strategy is further
proposed to compensate the PGO, which allows it to
bound the sample distribution as well as the fitted BGMM.
The overbound property of the PGO is proved to be
preserved through convolution. In addition, the position-
domain bounding and the PL are calculated based on
the fast Fourier transform [17], which largely reduces
the computation load compared to the direct convolution
approach. The bounding performance of the proposed
PGO is evaluated on two differential global navigation
satellite system (DGNSS) pseudorange datasets, includ-
ing the DGNSS pseudorange data collected from two
Continuously Operating Reference Stations (CORS) in
Minneapolis and the DGNSS pseudorange data collected
from a slightly urbanized area in Hong Kong. Results
show that the PGO can provide a sharper bound on
heavy-tailed error distributions compared to the two-step
Gaussian overbound [10] and yield competitive bounding
performance compared to the Gaussian-Pareto overbound
[4]. In addition, compared to the two-step Gaussian
overbounding method, the proposed method reduces the
mean vertical protection level (VPL) by more than 78%
without compromising integrity on the urban dataset. The
mean computation time of VPL is only 0.08 s with fifteen
measurements, which is well acceptable for a personal
computer. The contributions of this study are two folds:

1) Propose a CDF overbound (Principal Gaussian
overbound) for heavy-tailed error distributions and
prove that its overbounding property can be pre-
served through convolution. The calculation of PLs
is formalized based on the fast Fourier transform,
which largely reduces the computation time.

2) Experimentally demonstrate the bounding perfor-
mance of the proposed method in both range and
position domains with CORS and urban DGNSS
datasets. Especially in the urban dataset, PGO
reduces the mean VPL by over 78% without com-
promising integrity when compared to the two-step
Gaussian overbounding method.

The rest of this article is organized as follows. Section II
gives a brief review of the Gaussian overbounding meth-
ods, which are classified into two categories, including the
paired overbounding methods and the core overbounding
methods. The paired CDF overbound, EMC overbound,
two-step Gaussian overbound, core overbound, and the
Gaussian-Pareto overbound are reviewed. In Section III,
the GMM and its application on error fitting and over-
bounding research are illustrated, which provides the the-
oretical foundation for the development of PGO in Section
IV. In addition, the preservation of overbounding property
through convolution and the position-domain bounding
are illustrated in Section IV.D and Section IV.E, respec-
tively. Section V compares the bounding performance of
the PGO with the two-step Gaussian overbound and the
Gaussian-Pareto overbound. In Section VI.A, the impact
of the partition parameter on the bounding performance
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of the PGO is discussed. Section VI.C forecasts the
application of the PGO in fault detection tasks. Finally,
Section VII presents a summary.

II. OVERVIEW OF GAUSSIAN OVERBOUNDING
METHODS

Gaussian overbounding methods have played vital
roles in overbounding research, mainly attributed to their
simplicity and the preservation of their overbounding
properties through convolution. Researchers are devoted
to deriving a tight overbound of the error distribution and
propose various overbounding methods, such as paired
CDF overbound [11], two-step Gaussian overbound [10],
and Gaussian-Pareto overbound [4]. These methods, al-
though diverse in their application, share a common logic
and can be methodically classified into two categories:
paired overbounding methods and core overbounding
methods. In this section, we use the random variable v to
represent error and ov to represent the random variable
related to the overbound distribution of v.

A. Paired Overbounding Methods

1. Paired CDF overbound
In the paired CDF overbounding method [11], the

CDF of the overbound (Gov(x)) is constructed by two
CDFs, i.e., GL(x) and GR(x), as follows:

Gov (x) =


GL (x) ∀GL < 1

2

GR (x) ∀GR > 1
2

1
2 otherwise

. (1)

GL(x) and GR(x) can take any form as long as they are
CDFs. However, the distribution of v is said to be paired
CDF overbounded by Gov(x) only if

Gv(x) ≤ GL(x) ∀x (2a)
Gv(x) ≥ GR(x) ∀x , (2b)

where Gv(x) is the CDF of v. In the case of Gaussian
paired overbound [11], GL(x) and GR(x) are the CDF of
a Gaussian distribution taking the form:

GL(x) =

∫ x

−∞
fN (x;−bL, σL) dx (3a)

GR(x) =

∫ x

−∞
fN (x; bR, σR) dx , (3b)

where fN (x; b∗, σ∗) is the probability density function
(PDF) of a Gaussian distribution with mean b∗ and
standard deviation σ∗ as follows:

fN (x; b∗, σ∗) =
1

σ∗
√
2π

exp
−(x− b∗)

2

2σ2
∗

. (4)

By letting bL = bR > 0 and σL = σR, Rife et al.
formulated a symmetric paired Gaussian overbound for
the Wide Area Augmentation System (WAAS) and the
Local Area Augmentation System (LAAS) applications
[11]. This method, due to its significant advantage of
not introducing new parameters into the broadcast signal

of both augmentation systems, has been widely adopted.
However, the stringent requirement in (2) would exten-
sively inflate the standard deviation or enlarge the biases
in the Gaussian overbound [10].

2. EMC overbound
To tackle the issue of the flattened standard deviation,

Rife et al. proposed the excess-mass CDF (EMC) over-
bound [5] by allowing the total mass of the overbound
distribution greater than one. The Gaussian EMC over-
bound can be constructed by introducing the total mass
parameter K > 1 into (3), which is expressed as

G∗
L(x) =

∫ x

−∞
K · fN (x;−bL, σL) dx (5a)

G∗
R(x) =

∫ x

−∞
K · fN (x; bR, σR) dx+ (1−K) . (5b)

The total mass parameter K provides an extra degree
of freedom (DOF) for the sharp bounding of the error
distribution. However, the Gaussian EMC overbound is
a generalization of the paired CDF overbound and still
needs to bound the CDF of the error distribution for all
values (as required in (2)), which inevitably requires large
biases in the overbound distribution [10].

3. Two-step Gaussian overbound
The large bias problem is improved by the two-step

Gaussian overbounding method [10], which relaxes the
constraints in (2) by employing an intermediate over-
bound distribution. In the first step, a piecewise uniform,
symmetric, and unimodal distribution Gsu(x) is deter-
mined through an ad hoc approach:

Gv(x) ≤ Gsu(x) ∀x . (6)

In the second step, the left-hand side overbound is deter-
mined by finding the minimum σL that satisfies∫ x

−∞
fN (x;−bL, σL) dx ≥ Gsu(x) ∀x ≤ 0 . (7)

Equation (7) relaxes the constraint in (2), i.e., only the
left-hand side of the intermediate distribution needed to
be CDF overbounded. The right-hand side overbound is
obtained by repeating the above process on the mirror
image of the sample distribution, i.e., Gv(−x). The right-
hand side overbound has the CDF form as follows:∫ x

−∞
fN (x; bR, σR) dx ∀x > 0 . (8)

Although the two-step Gaussian overbounding method
can significantly reduce the bias compared to the conven-
tional paired overbounding methods [10], its overbound
for the heavy-tailed distribution can still be conservative,
which will be shown through numerical experiments in
Section V.

B. Core Overbounding Methods

1. Core overbound
The core overbounding concept [8] is proposed to

tackle tail uncertainty by adding a small probability at
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infinity, which closely resembles DeCleene’s theorem that
the pseudorange error has to be bounded to infinity [9].
Specifically, this concept decomposes the error distribu-
tion into two fractions, including the core part Gv,core(x)
and the tail part Gv,tail(x) as follows,

Gv(x) = Gv,core(x) +Gv,tail(x), (9)

where Gv,core(x) and Gv,tail(x) are defined in terms of the
error distribution PDF fv(x) as follows:

Gv,core(x) =

{∫ x

−∞ fv(x) dx |x| ≤ T

0 |x| > T
(10a)

Gv,tail(x) =

{
0 |x| ≤ T∫ x

−∞ fv(x) dx |x| > T
, (10b)

where T is the core-tail transition point. The core over-
bound of Gv(x) is defined as

Gov(x) = Ĝov,ex(x) + Ĝov,im(x) , (11)

where Ĝov,ex(x) and Ĝov,im(x) are CDFs scaled by a fac-
tor within the range of zero to one. In general, Ĝov,ex(x)
is an explicit function that bounds the worse-case CDF
of the core part of the error distribution,

Gv,core(x) ≤ Ĝov,ex(x) ∀ − T ≤ x ≤ 0 (12a)

Gv,core(x) ≥ Ĝov,ex(x) ∀0 < x ≤ T , (12b)

and Gov,im(x) is an implicit function (i.e., no assumptions
are made on its shape) that bounds the tail part of the error
distribution,

Gv,tail(x) ≤ Ĝov,im(x) ∀x < −T (13a)

Gv,tail(x) ≥ Ĝov,im(x) ∀x > T . (13b)

As a realization of the core overbounding concept, the
Gaussian Core (GC) overbound is proposed in the same
paper [8] as follows:

ĜGC,ex(x) = (1− Pt) fN (x; 0, σ0) (14a)

ĜGC,im(x) =
1

2
Pt , (14b)

where σ0 is the standard deviation of the Gaussian core,
and Pt is the total probability of the tail error,

Pt = Gv,tail(T ) . (15)

It is clear that the tightness of the overbound in the tail re-
gion depends on the magnitude of Pt. If the Gaussian core
can bound the most part of the error distribution, Pt can
take extremely small values. However, this comes with
the sacrifice of increasing σ0, especially when bounding
heavy-tailed error distributions.

2. Gaussian-Pareto overbound
Instead of employing the implicit tail core, Larson

et al. proposed the Gaussian-Pareto overbound [4] by
adopting the generalized Pareto distribution for the tails.
The Gaussian-Pareto overbound stems from the extreme
value theory, which shows that almost all normalized con-
tinuous probability distributions asymptotically approach
a generalized Pareto distribution [18]. This property en-
ables the generalized Pareto distribution to provide a true

overbound for data far beyond the end of the empirical
distributions, as required in DeCleene’s theorem [9]. The
tail of the Gaussian-Pareto overbound can be formalized
as

ĜGP,tail(x)

=

Gv (uL)−GGPD (uL − x)Gv (uL) ∀x < uL

GGPD (x− uR)
(
1−Gv (uR)

)
+Gv (uR) ∀x > uR

,
(16)

where uL < 0 is the left core-tail transition point, uR > 0
is the right core-tail transition point, and GGPD(x;µ, β, γ)
is the CDF of the generalized Pareto distribution with a
location parameter, u, a scale parameter, β, and a shape
parameter, γ [19], as shown below:

GGPD (x;u, β, γ) =

1−
(
1 +

γ(x−u)
β

)− 1
γ

γ ̸= 0

1− exp
(
−x−u

β

)
γ = 0

. (17)

Although the Gaussian-Pareto overbounding method of-
fers the potential to tightly overbound the tail distribution,
it is unclear whether the Gaussian-Pareto overbound can
maintain the overbounding property through convolution,
which is crucial for deriving pseudorange-level require-
ments from the position-domain integrity requirement [9].

III. GAUSSIAN MIXTURE MODEL

GMM is a statistical technique that plays a crucial role
in error modeling, particularly in capturing heavy-tailed
distributions that are commonly observed in real-world
scenarios [12], [20], [21]. A GMM represents a proba-
bility distribution as a weighted combination of multiple
Gaussian distributions, each representing a component
of the mixture. In particular, BGMM is of significant
research interest as it effectively balances simplicity and
flexibility, enabling precise modeling of both the core and
tails of heavy-tailed distributions while avoiding overfit-
ting and excessive parameters [12], [22]. The PDF of a
zero-mean BGMM for heavy-tailed distribution modeling
can be formalized as

f(x) = p1fN (x; 0, σ1) + (1− p1) fN (x; 0, σ2) , (18)

where fN (x; 0, σ1) and fN (x; 0, σ2) are the PDF of the
first and the second Gaussian component, σ1 and σ2 are
the corresponding standard deviations, and p1 and 1− p1
are the mixing weight of the two Gaussian components,
respectively. In this paper, it is assumed that σ1 < σ2 and
p1 ∈ (0.5, 1), indicating that the Gaussian component
with the smaller standard deviation is selected as the
1st Gaussian component and exhibits a higher mixing
weight. The estimation of parameters in a GMM can be
accomplished through Maximum Likelihood Estimation
(MLE). The expectation-maximization (EM) algorithm
[16] is usually adopted to obtain the MLE. A concise
summary of the EM algorithm is provided in Appendix
A.

Due to the appealing nature of GMM, research on
GMM-based overbounds emerged as early as 2001 and
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has received increased attention in recent years [7]. Shiv-
ely compared GMM overbounding methods with Gaus-
sian and exponential overbounding methods in terms of
the resulting inflation factor, suggesting that the GMM
method may align most closely with the manner in which
errors are present in actual data [7]. Lee used the GMM
as an empirical distribution to model the ground facility
error distribution, showing the potential of GMM to
reduce the inflation factor and the PL [22]. However,
the PL is calculated by a Gaussian overbound of the
GMM, which inevitably increases the conservatism. To
tackle this issue, Blanch et al. constructed a BGMM
for pseudorange error modeling in the worst case [12].
They proved that the posterior position density is also
GMM and derived the PL by integrating the posterior
position density. Nevertheless, the computation of the PL
involves a large number of matrix inversions, which cause
a considerable computation burden.

These studies usually obtain the GMM from the
worst-case analysis [12] or sample data fitting [15], [16].
However, a rigorous method to determine the least conser-
vative GMM overbound of the error distribution has not
been developed. The crux of this issue lies in the difficulty
of establishing overbounding relationships between two
GMMs. In Gaussian scenarios, a Gaussian with a larger
standard deviation can always bound the Gaussian with
a smaller standard deviation. However, in the context
of GMMs, the increasing parameters can provide more
flexibility in shaping the distribution, which in turn makes
it more difficult to assess whether one GMM’s distribution
covers the entire range of the other GMM’s distribution.
Therefore, this paper explores an alternative way to utilize
GMM to bound the heavy-tailed error distribution. We
propose the PGO, which is proven to be the true CDF
overbound of the GMM distribution.

IV. PRINCIPAL GAUSSIAN OVERBOUND FOR THE
HEAVY-TAILED ERROR DISTRIBUTION

A. Membership Weight Analysis

The process of generating samples from a GMM can
be seen as simultaneously generating samples from mul-
tiple Gaussian distributions according to their respective
weights. For example, given a K-component GMM with
mixture weights of p1, p2,. . . , pK , the sample generated
from it at time t is drawn from the 1st component
with probability p1, drawn from the 2nd component with
probability p2, and etc. From the perspective of statistical
inference, we can also estimate the likelihood of a sam-
ple belonging to a specific Gaussian component, which
is known as the membership weight. The membership
weight indicates the posterior probability of a data point
being generated from each component, which can be
derived by utilizing the Bayes’ Theorem [23]. For a
given observation x, we define the allocation variable
c = {1, 2, . . . ,K} that marks the Gaussian component
from which x is generated. Then, the mixture weight of

the kth Gaussian component can be interpreted as the
prior probability of the allocation variable that equals k,
as shown below:

pk = P (c = k) . (19)

For a given c = k, the probability of generating x (i.e.,
the likelihood) is

P (x|c = k) = fN (x; bk, σk) . (20)

According to Bayes’ Theorem, the posterior probability
is given by

sk = P (c = k|x) = pkfN (x; bk, σk)∑K
k=1 pkfN (x; bk, σk)

, (21)

where sk is the membership weight of the kth Gaussian
component for the observation x.

In this paper, we mainly focus on the zero-mean
BGMM in (18) due to its good balance of simplicity and
flexibility. The membership weights s1 and s2 of the zero-
mean BGMM can be written as

s1(x) =
p1fN (x; 0, σ1)

p1fN (x; 0, σ1) + (1− p1) fN (x; 0, σ2)
(22a)

s2(x) =
(1− p1) fN (x; 0, σ2)

p1fN (x; 0, σ1) + (1− p1) fN (x; 0, σ2)

= 1− s1(x) . (22b)

By substituting the PDF equation of a Gaussian distri-
bution into (22a),

s1(x) =

p1
σ1

exp

(
− 1

2

(
x
σ1

)2
)

p1
σ1

exp

(
− 1

2

(
x
σ1

)2
)

+ 1−p1
σ2

exp

(
− 1

2

(
x
σ2

)2
)

=
1

1 + 1−p1
p1

σ1
σ2

exp

(
σ2
2−σ2

1

2σ2
1σ

2
2
x2

) .

(23)

Since σ2 > σ1, exp
(

σ2
2−σ2

1

2σ2
1σ

2
2
x2
)

will be a symmetric
convex function in terms of x; Hence, s1(x) will be a
symmetric concave function. Since s2(x) = 1 − s1(x),
s2(x) will consequently be a symmetric convex function.
Fig. 1 plots s1(x) and s2(x) in two settings of GMMs,
including p1 = 0.9, σ1 = 0.5, σ2 = 0.7 in Fig. 1a and
p1 = 0.9, σ1 = 0.5, σ2 = 1.5 in Fig. 1c. In both cases,
s1(x) has large values when x is located at the central
region of the BGMM, and the value decreases dramat-
ically when x goes far away from the center. However,
s2(x) shows an opposite trend that the largest value of
s2(x) is located at the tail region. These trends indicate
the dominance of each Gaussian component in different
regions of the BGMM, which provides the theoretical
foundation for the dominance partition illustrated in the
next section.

B. Dominance Partition

It is straightforward to use the intersection points of
s1(x) and s2(x) to partition the core and tail regions of
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(a) (b)

(c) (d)

s (x)1

s (x)2

xrp

xlp

s (x)1

s (x)2

xrp

xlp

Fig. 1. (a) Membership weights and (b) the relative kurtosis error of
a zero-mean BGMM with p1 = 0.9, σ1 = 0.5, and σ2 = 0.7; (c)

Membership weights and (d) the relative kurtosis error of a zero-mean
BGMM with p1 = 0.9, σ1 = 0.5, and σ2 = 1.5. xlp and xrp are the

core-tail transition points. The two intersection points of s1(x) and
s2(x) are marked with blue and red solid points.

the zero-mean BGMM. The intersection points xL
intersect

and xR
intersect can be found by solving s1(x) = s2(x) as

xL
intersect = −

√
2σ2

1σ
2
2

σ2
2 − σ2

1

ln
p1σ2

(1− p1)σ1
(24a)

xR
intersect =

√
2σ2

1σ
2
2

σ2
2 − σ2

1

ln
p1σ2

(1− p1)σ1
. (24b)

According to the convex property of s2(x), the value
of s2(x) will exceed 0.5 and increase monotonically as
the data point moves away from xR

intersect to ∞ (or from
xL

intersect to −∞). Meanwhile, s1(x) will decrease mono-
tonically and eventually go to zero. This trend indicates
that the 2nd Gaussian component dominants the region
x ∈

(
−∞, xL

intersect

]
∪
[
xR

intersect,∞
)
.

However, the dominance relationship in the region
x ∈

[
xL

intersect, x
R
intersect

]
is more complicated than that in

the region x ∈
(
−∞, xL

intersect

]
∪
[
xR

intersect,∞
)
. Although

s2(x) monotonically decreases when x gradually moves
to the center, s2(x) will not be reduced to zero, which
indicates that the impacts of the 2nd Gaussian component
in the region x ∈

[
xL

intersect, x
R
intersect

]
cannot be ignored. To

quantify the impacts of the 2nd Gaussian component on
the tailedness of the BGMM distribution, we calculate the
kurtosis, a measure of tailedness, of the doubly truncated
zero-mean BGMM and compare it with the kurtosis of
doubly truncated standard normal distribution [24], [25].
Specifically, we randomly generate Nt = 10, 000 samples
from the zero-mean BGMM and truncate samples smaller
than xL

t or larger than xR
t , where xL

t < 0 and xR
t > 0 are

the truncation points. The truncation rate γt is defined by

γt = 1− nt

Nt
, (25)

where nt is the number of samples in [xL
t , x

R
t ]. Then we

calculate the kurtosis of samples within [xL
t , x

R
t ] by

kBGMM(xL
t )=

1
nt

∑
xi∈[xL

t ,xR
t ](xi − x̄)4[

1
nt

∑
xi∈[xL

t ,xR
t ](xi − x̄)2

]2 , (26)

where x̄ is the mean of samples within [xL
t , x

R
t ]. The

corresponding truncation points of the standard normal
distribution can be calculated by

xL
normal=Q−1

(γt
2

)
xR

normal=− xL
normal ,

(27)

where Q−1(·) is the quantile function of the standard
normal distribution. (27) ensures that the doubly truncated
standard normal distribution has the same truncation rate
as the doubly truncated zero-mean BGMM. Similarly,
we generate Nt = 10, 000 samples from the standard
normal distribution and calculate the kurtosis of the
truncated distribution by setting xL

normal and xR
normal as the

truncation points. The kurtosis of the doubly truncated
standard normal distribution is denoted as knormal(x

L
t ). We

then calculate the relative error between kBGMM(xL
t ) and

knormal(x
L
t ) by

ek(x
L
t ) =

kBGMM(xL
t )− knormal(x

L
t )

knormal(xL
t )

, (28)

and plot its value against xL
t in Fig. 1.

Fig. 1b shows the relative kurtosis error in the case of
BGMM with p1 = 0.9, σ1 = 0.5, and σ2 = 0.7. The rel-
ative kurtosis error is within the ±5% error region when
xL
t ≥ xL

intersect, indicating that samples in the core region
x ∈

[
xL

intersect, x
R
intersect

]
show similar tailedness with the

truncated standard normal distribution. This indicates that
xL

intersect could be a good core-tail transition point since
the core region x ∈

[
xL

intersect, x
R
intersect

]
is less affected

by the 2nd Gaussian component. However, the situation
becomes different in the case of BGMM with p1 = 0.9,
σ1 = 0.5, and σ2 = 1.5, as shown in Fig. 1d. The relative
kurtosis error is 14% when xL

t = xL
intersect = −1.36, and

this value slowly decreases to 5% until xL
t increases to

−1. If we adopt xL
intersect as the core-tail transition point,

the core region could be severely affected by the 2nd
Gaussian component, making it difficult to distinguish the
dominance relationship in the core region. Therefore, it
is more beneficial to use the truncation point with 5%
relative kurtosis error as the core-tail transition point. In
summary, we use the following rules to choose the core-
tail transition point

xlp =

{
xL

intersect if |ek(xL
intersect)| ≤ α

xL
t s.t. ek(xL

t ) = α if |ek(xL
intersect)| > α

, (29)

xrp = −xlp , (30)

where α is the partition parameter. We define [xlp, xrp]
as the core region and (−∞, xlp] ∪ [xrp,∞) as the tail
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region. In this paper, we choose α = 0.05. Section VI.A
will discuss the impacts of the partition parameter α on
the bounding performance of the PGO.

C. Principal Gaussian Overbound

In this section, we propose the PGO based on the
scaling and shifting of the dominant Gaussian component
of the BGMM in the tail and core regions. The PDF of
the PGO takes the following form:

fo(x) =

{
(1 + k) (1− p1) fN (x; 0, σ2) |x| > xrp

p1fN (x; 0, σ1) + c |x| ≤ xrp

,

(31)
where k is the scaling parameter, and c is the shifting
parameter. The remainder of this section illustrates the
construction of PGO.

1. Tail region bounding
In the tail region, the BGMM is dominated by the

2nd Gaussian component. Therefore, the 2nd Gaussian
component, along with its mixture weight, is taken as the
basis for bounding the tail region. In addition, compen-
sation is needed to account for the contribution of the 1st
component in the tail region. An intuitive approach of the
CDF overbound at the left tail region is shown as follows:

GL
o(x) = p1G (xlp; 0, σ1)

+ (1− p1)G (x; 0, σ2) ∀x < xlp ,
(32)

where G (x; 0, σ1) and G (x; 0, σ2) are the CDF of the 1st
and 2nd Gaussian component, respectively. Let G(x) be
the CDF of the BGMM defined in (18),
GL

o(x)−G(x) = GL
o(x)−

(
p1G (x; 0, σ1)

+ (1− p1)G (x; 0, σ2)
)

= p1
(
G (xlp; 0, σ1)−G (x; 0, σ1)

)
.

(33)

Since x < xlp, we have G (xlp; 0, σ1) − G (x; 0, σ1) > 0.
Therefore, GL

o(x) is the CDF overbound of the BGMM
at the left tail region. However, the CDF overbound in
(32) includes a constant term, p1G (xlp; 0, σ1), which is
defined in an unbounded interval. This poses a challenge
in deriving the PDF of the overbound distribution, which
is necessary for convolution purposes.

We notice that p1G (xlp; 0, σ1) in (32) is a constant
term, which could be compensated by inflating the weight
of the 1st Gaussian component, i.e., G (x; 0, σ2) in (32).
Therefore, we introduce the scaling parameter k into (32)
as follows:

GL
o(x) = (1 + k) (1− p1)G (x; 0, σ2) ∀x < xlp . (34)

We need to determine the value of k so that (34) is a CDF
overbound. Let (32) and (34) produce the same value at
xlp, the value of k can be determined by

k =
p1G (xlp; 0, σ1)

(1− p1)G (xlp; 0, σ2)
. (35)

Appendix B gives proof that GL
o(x) in (34) is the CDF

overbound at the left tail region. The PDF of the over-
bound distribution at the left tail region can be derived

by taking the derivative of (34) as

fL
o (x) = (1 + k) (1− p1) fN (x; 0, σ2) ∀x < xlp . (36)

Similarly, the PDF of the overbound distribution at the
right tail region can be written as

fR
o (x) = (1 + k) (1− p1) fN (x; 0, σ2) ∀x > xrp . (37)

2. Core region bounding
In the core region, the BGMM is dominated by the

1st Gaussian component, as illustrated in Section IV.B.
Nevertheless, the contribution of the 2nd Gaussian com-
ponent to the probability distribution in the core region is
not negligible. Therefore, we introduce a constant term c
to compensate for such a contribution when developing
the overbound distribution in the core region, as shown
below:

f core
o (x) = p1fN (x; 0, σ1) + c ∀xlp ≤ x ≤ xrp , (38)

To determine the value of c, we calculate the CDF of
f core
o (x) through integration as follows:

Gcore
o (x) =

∫ xlp

−∞
fL
o (x) dx+

∫ x

xlp

f core
o (x) dx (39a)

= GL
o(xlp) + c (x− xlp)

+ p1
(
G (x; 0, σ1)−G (xlp; 0, σ1)

)
(39b)

= p1G (x; 0, σ1) + c (x− xlp)

+ (1− p1)G (xlp; 0, σ2) . (39c)

Let Gcore
o (0) = G(0), the value of c is determined by

c =
(1− p1)

(
G (xlp; 0, σ2)− 0.5

)
xlp

. (40)

To prove that Gcore
o (x) is the CDF overbound in the core

region, we calculate the difference between Gcore
o (x) and

G(x) as follows:

∆G(x) = Gcore
o (x)−G(x)

=
[
p1G (x; 0, σ1) + c (x− xlp)

+ (1− p1)G (xlp; 0, σ2)
]

−
[
p1G (x; 0, σ1)

+ (1− p1)G (x; 0, σ2)
]

= c (x− xlp)− (1− p1)G (x; 0, σ2)

+ (1− p1)G (xlp; 0, σ2) .

(41)

The first and second derivatives of ∆G(x) can be obtained
by

∆G(x)
′
= c− (1− p1) fN (x; 0, σ2) (42a)

∆G(x)
′′
=

1− p1

σ2
2

√
2π

x exp

(
−1

2

(
x

σ2

)2
)
. (42b)

When xlp ≤ x < 0, ∆G(x)
′′

is negative over the domain,
indicating that ∆G(x) is a concave function. We further
examine the sign of ∆G(x) at the two endpoints as
follows:

∆G (xlp) = 0 (43a)
∆G(0) = Gcore

o (0)−G(0) = 0 . (43b)
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According to the definition of the concave function, for
any ω ∈ [0, 1], the following equation holds:

∆G
(
(1− ω)xlp + ω × 0

)
≥ (1− ω)∆G (xlp) + ω∆G(0) = 0 .

(44)

It is equivalent to saying that

∆G(x) ≥ 0 ∀xlp ≤ x < 0 . (45)

Similarly, when 0 < x ≤ xrp, ∆G(x)
′′

is positive over the
domain which means that, ∆G(x) is a convex function.
The sign of ∆G(x) at xrp is examined as follows:

∆G (xrp) = c (xrp − xlp)

− (1− p1)G (xrp; 0, σ2)

+ (1− p1)G (xlp; 0, σ2) .

(46)

By substituting (30), (40) and G (xrp; 0, σ2) = 1 −
G (xlp; 0, σ2) into (46), we can obtain that ∆G (xrp) = 0.
According to the definition of the convex function, we
have

∆G(x) ≤ 0 ∀0 ≤ x ≤ xlp . (47)

Combining (45) and (47), we can conclude that Gcore
o (x)

is the CDF overbound of G(x) at the core region.
The PGO of the BGMM with p1 = 0.9, σ1 = 0.5,

and σ2 = 1.5 is plotted in Fig. 2. In this example, the
parameters of the PGO are computed as k = 0.5881 and
c = 0.0245. In addition, the two-step Gaussian overbound
[10] is also depicted for comparison. The plot reveals
that the PDF and CDF of the PGO are closely aligned
with those of BGMM in both the tail and core regions,
compared to those of the two-step Gaussian overbound.
The thumbnail in Fig. 2a illustrates the distribution of the
PGO in the vicinity of the core-tail transition point, where
the PDF of the PGO is not continuous at the transition
point. Although the leap of PDF at the transition point
is not negligible (calculated to be 0.06 through (31)), the
CDF of the PGO appears exceptionally smooth near the
core-tail transition point, as displayed in the thumbnail of
Fig. 2b.

3. Sigma inflation
Equation (31) gives the overbound of the zero-

mean BGMM distribution; however, in the application
of bounding arbitrary sample distributions, samples may
not be well characterized by the zero-mean BGMM
distribution. In such a case, the PGO may not provide an
overbound for these samples. These unbounded samples
usually occur in the tails of the sample distribution. This
is because samples in the central region usually exhibit a
higher likelihood, and therefore the EM algorithm would
prioritize the fitting performance of these central-region
samples. In this section, we propose to inflate the tail of
the PGO to tackle these unbounded samples.

The most straightforward approach is to increase σ2.
In the meanwhile, we have to ensure that the inflated PGO
is the overbound of the before-inflation PGO and, thus,
fitted zero-mean BGMM. Define σ∗

2 as the inflated σ2,
and we have

σ∗
2 = τ2σ2 , (48)
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Fig. 2. The (a) PDF and (b) CDF of the Principal Gaussian
overbound of a zero-mean bimodal Gaussian mixture model with

p1 = 0.9, σ1 = 0.5, and σ2 = 1.5. The two-step Gaussian overbound
is plotted for comparison.

where τ2 > 1 is the tail inflation factor. Then, the inflated
tail bound can be written by

GL∗
o (x)= (1 + k∗) (1− p1)G (x; 0, σ∗

2) ∀x < xlp (49a)

k∗=
p1G (xlp; 0, σ1)

(1− p1)G (xlp; 0, σ∗
2)

, (49b)

where k∗ is the new scaling parameter. Since σ∗
2 > σ2,

we have G (xlp; 0, σ
∗
2) > G (xlp; 0, σ2) and thus k∗ <

k. Therefore, it is difficult to compare the magnitude of
GL∗

o (x) and GL
o(x). A naive solution is to make k∗ = k

by scaling σ1 to σ∗
1 , as shown below

p1G (xlp; 0, σ
∗
1)

(1− p1)G (xlp; 0, σ∗
2)

=
p1G (xlp; 0, σ1)

(1− p1)G (xlp; 0, σ2)
. (50)

Indeed, (50) is satisfied only when σ∗
1 is larger than σ1.

We further check the bounding conditions in the core
region by examining (39c) when x < 0. The first term
p1G(x; 0, σ1) and the third term (1 − p1)G(xlp; 0, σ2) in
(39c) will increase with the inflation in σ1 and σ2. The
second term c(x− xlp) in (39c) can be re-written by

c(x− xlp) =
(1− p1)

(
G (xlp; 0, σ2)− 0.5

)
(x− xlp)

xlp
,

(51)
where xlp ≤ x < 0 and 1 − p1 > 0. The inflation in σ2

will increase the value of G(x; 0, σ2), thus enlarging c(x−
xlp). Therefore, Gcore∗

o (x) with inflated σ2 is larger than
Gcore

o (x). In summary, the inflated PGO has the following
property when x < 0,{

GL∗

o (x) > GL
o(x) ∀x < xlp

Gcore∗
o (x) > Gcore

o (x) ∀xlp ≤ x < 0 ,
(52)
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indicating that the inflated PGO is the overbound of the
before-inflation PGO and, thus, the fitted BGMM.

In addition, unbounded samples may also occur in
the core region, although such cases are rare. A slightly
different inflation strategy could be applied. We only
inflate the core of the PGO to bound these samples. Define
σ∗
1 as the inflated σ1, and we have

σ∗
1 = τ1σ1 , (53)

where τ1 > 1 is the core inflation factor. The inflation
of σ1 only affects the value of G(x; 0, σ1) in Gcore

o (x)
and k in GL

o(x). Actually, both G(x; 0, σ1) and k are
increased by inflating σ1, thereby enlarging the value
of Gcore

o (x) and GL
o(x) when x < 0. As a result, the

same conclusion as in (52) can be drawn. Our inflation
strategies in both tail and core regions can ensure the
preservation of overbounding properties with respect to
the fitted BGMM.

The inflation of σ2 and σ1 can be realized by an
iterative approach. In each iteration, we inflate σ2 or
σ1 according to the violation of bounding conditions
with a small and fixed inflation factor. Based on the
inflated PGO, all samples are examined for the violation
of bounding conditions. The iteration process will stop
once all samples are CDF overbounded by the inflated
PGO. The pseudocode of the sigma inflation strategy is
given in Appendix F. In addition, Appendix G shows
summarize the steps for implementing PGO.

D. Preservation of Overbounding Property

In this section, we use DeCleene’s theorem [9] to
prove that the overbounding property of the PGO can be
preserved through convolution; more specifically, to prove
that the overbounding property can be preserved between
the range and position domain. Given that Goa(x) and
Gov(x) are the overbound distribution of the error distri-
bution Ga(x) and Gv(x), respectively, it is essential for
the overbound distribution to have the following property:

Goa+ov(x) overbound Ga+v(x) . (54)

DeCleene proves that the above property is established if
Goa(x), Gov(x), Ga(x), and Gv(x) are all unimodal and
symmetric distributions [9].

In this paper, the zero-mean BGMM in (18) and
the PGO in (31) are inherently symmetric distributions.
Therefore, we only need to prove the unimodality of these
distributions. The first derivative of the PDF of the zero-
mean BGMM is given by

f
′
(x) =− x

σ2
1

· p1fN (x; 0, σ1)

− x

σ2
2

· (1− p1) fN (x; 0, σ2) .
(55)

Clearly,

f
′
(x) > 0 ∀x < 0, f

′
(0) = 0, f

′
(x) < 0 ∀x > 0 . (56)

Therefore, the zero-mean BGMM is a unimodal distribu-
tion.

For the PGO, Appendix C proves that fo(x) is a
monotonically increasing function when x < 0. Accord-
ing to the symmetric property of fo(x), we can conclude
that fo(x) is a monotonically decreasing function when
x ≥ 0. Therefore, fo(x) is a unimodal function. This ends
the proof that the overbounding property of the PGO is
preserved through convolution.

E. Position-Domain Bounding

1. Overbound of positioning error
In GNSS positioning, it is essential to project the

range-domain error to the position-domain error as it
allows us to estimate the accuracy of the positioning re-
sults obtained from GNSS measurements. For single point
positioning or DGNSS positioning, a general relationship
between range-domain error and position-domain error is
determined by [26], [27]

∆x = S∆ρ , (57)

where ∆x is the estimation error vector, including the
three-dimensional position error and the clock error (ex-
ists in the single point positioning), ∆ρ = [ρ1, ρ2, . . . , ρN ]
is the measurement error vector in the range-domain, N
is the number of measurements, and S is the solution
matrix obtained from the least square solution. Although
the forms of ∆x, ∆ρ, and S are different for the two
positioning methods, a common logic is shared. Assuming
that the third element of ∆x is the vertical position error
(VPE), the third row of (57) can be extracted and written
as

VPE =

N∑
i=1

s3,i∆ρi , (58)

where s3,i refers to the ith element of the third row in
the S matrix. Let

Y ri
i = s3,i∆ρi, i = 1, 2, · · · , N (59)

be a new random variable, and then VPE can be written
by

VPE =

N∑
i=1

Y ri
i . (60)

The PDF of VPE can be obtained through convolution as

fVPE(x) = fr1
Y1
(x) ∗ fr2

Y2
(x) ∗ . . . ∗ frN

YN
(x) , (61)

where
fri
Yi
(x) =

1

|s3,i|
fri

( x

|s3,i|

)
(62)

is the PDF of Y ri
i , fri(x), i = 1, 2, · · · , N is the PDF

of the ith measurement error, and ∗ is the convolution
operation. A proof of (62) is provided in Appendix
D. Assuming the distribution of frk(x) has the largest
variance σ2

k, the most conservative VPE distribution is
given by

fVPE(x) = frk
Y1
(x) ∗ frk

Y2
(x) ∗ . . . ∗ frk

YN
(x) . (63)

Then, the VPE can be bounded by

fo,VPE(x) = fo,Y1(x) ∗ fo,Y2(x) ∗ . . . ∗ fo,YN
(x) , (64)
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where

fo,Yi
(x) =

1

|s3,i|
fo

( x

|s3,i|

)
, (65)

and fo(x) is the PGO of frk(x).

2. Fourier transform
The convolution operation in (64) involves the PGO,

which is defined as a piecewise function in (31). This
can be a challenging task due to the complexity of
the function. However, the Fourier transform (FT) [28],
denoted as F(·), provides an alternative way to compute
the distribution of fo,VPE(x). According to the convolu-
tion theorem, the Fourier transform of fo,VPE(x) can be
expressed by

F (fo,VPE(x)) = F (fo,Y1(x)) · F (fo,Y2(x))

· . . . · F (fo,YN
(x)) ,

(66)

where · denotes the point-wise multiplication. The distri-
bution of fo,VPE(x) is recovered by the inverse Fourier
transform (IFT) as follows:

fo,VPE(x) = F−1
(
F (fo,Y1(x))

· F (fo,Y2(x)) · . . . · F (fo,YN
(x))

)
.

(67)

In practice, the FT and IFT are realized by discrete Fourier
transform (DFT) and its inverse (IDFT) [28], respectively,
which means the PDF fo,Yi

(x) should be discretized.
According to DeCleene’s theorem [9], the discrete model
should be the overbound for the continuous distribution it
replaces. However, the discretization strategy that directly
samples the PDF at equal intervals cannot guarantee the
preservation of overbounding properties. Therefore, we
propose an alternative discretization strategy, as illustrated
in the next section.

3. Discretization satisfying overbounding
Inspired by the discrete overbounding model proposed

in [29], we propose to discretize the CDF related to
fo,Yi

(x), which can be formalized as follows:

Fo,Yi(x)=

∫ x

−∞
fo,Yi(x)dx =

∫ x

−∞

1

|s3,i|
fo

( x

|s3,i|

)
dx

=Fo

( x

|s3,i|

)
,

(68)
where Fo(x) is the CDF of the PGO for frk(x). The dis-
cretization process can be regarded as constructing a dis-
cretized overbound distribution for Fo,Yi

(x). Specifically,
Let 2L−1 be the length of the discretized sequence, and T
be the sampling interval (unit: meter), and then we can (al-
most) equally divide the domain of Fo,Yi

(x) into 2L inter-
vals, including (−∞, x1), [x1, x2), ..., [x2L−2, x2L−1), and
[x2L−1,∞), where xn = (n−L)T, n = 1, 2, · · · , 2L− 1.
The discretization results are shown in Fig. 3a, where
each interval has equal length T except the first and the
last interval. The discrete CDF overbound of Fo,Yi(x) is

formalized as a piecewise function as follows:

FD,Yi
(x)

=



Fo,Yi
(x) if x < x1

Fo,Yi
(xn+1) if xn ≤ x < xn+1, 1 ≤ n < L− 1

Fo,Yn (xn) if xn ≤ x < xn+1, L− 1 ≤ n < 2L− 2

Fo,Yi
(x) if x ≥ x2L−1

.

(69)
As can be seen, the discrete model FD,Yi(x) is the

overbound for the continuous model Fo,Yi(x). The prob-
ability mass function (PMF) of FD,Yi

(x) can be calculated
by

pD,Yi
(x)

=


FD,Yi

(x1)− Fo,Yi
(x1) if x = x1

FD,Yi
(xn)− FD,Yi

(xn−1) if x = xn, 1 < n ≤ 2L− 1

0 otherwise

,

(70)
which has a discrete nature. The discretization process

is completed by evaluating pD,Yi
(x) at the 2L− 1 points

as follows:

Yo,i[n] = pD,Yi
(xn), n = 1, 2, · · · , 2L− 1 . (71)

Then, the PMF of the VPE overbound in the discretized
form can be obtained by the discrete convolution as
follows:

Yo,VPE[n] = (Yo,1 ∗ Yo,2 ∗ . . . ∗Y o,N ) [n] . (72)

By taking the discrete convolution theorem, Yo,VPE[n] can
be computed as

Yo,VPE[n] = F−1
D

(
FD (Yo,1) · FD (Yo,2) · . . .

· FD (Yo,N )
)
, n = 1, 2, · · · , Lo

Lo = N × (2L− 2) + 1 ,

(73)

where FD(·) and F−1
D (·) denote the DFT and IDFT [28],

respectively. Note that the length of Yo,VPE[n] is extended
to N × (2L − 2) + 1. This is because the length of
the resulting sequence in the convolution is given by
L1 + L2 − 1, where L1 and L2 are the lengths of two
input sequences, respectively. In addition, the convolution
process does not change the sampling interval; therefore,
the distance of the domain of any two adjacent elements
in Yo,VPE[n] is T , which is the same as that in Yo,i[n]. The
DFT is usually implemented by the fast Fourier transform
algorithm [17] in the modern software solution or even
dedicated hardware, whose computational complexity is
only O ((Le)log(Le)), where Le is the length of the input
sequence and Le = 2L− 1 in our case.

4. Calculation of protection level
The discrete sequence Yo,VPE[n] in (73) can be in-

terpreted as the PMF of the VPE overbound evaluated
at tn = (n − Lo+1

2 )T . Here we use a different notation
t to represent the domain of Yo,VPE[n] without loss of
generality. The VPL can be obtained by finding the index
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m ∈ {1, . . . , Lo} that satisfies the following conditions:

m−1∑
n=1

Yo,VPE[n] <
1

2
PHMI

m∑
n=1

Yo,VPE[n] ≥
1

2
PHMI ,

(74)

where
∑m−1

n=1 Yo,VPE[n] is the cumulative probability from
t1 to tm−1, as shown in Fig. 3b, and PHMI is the specified
probability of hazardously misleading information. The
VPL is given by

VPL = |tm−1| =
∣∣∣∣((m− 1)− Lo + 1

2

)
T

∣∣∣∣ . (75)

V. BOUNDING PERFORMANCE ANALYSIS

This section analyzes the bounding performance of
the proposed PGO on the DGNSS pseudorange data. We
compare the proposed method with the following two
methods:

1) Two-step Gaussian overbound: a typical paired
overbounding method that utilizes two Gaussian
distributions to overbound the left-side and right-
side error distribution separately [10]. For practical
applications, the bias terms in the left side and the
right side overbounds are set to be the same;

2) Gaussian-Pareto overbound: a recently developed
core overbounding method that bounds the core
part of the error with Gaussian distribution and
bounds the tail part with the generalized Pareto
distribution [4].

Two datasets, including the DGNSS pseudorange data
collected from two Continuously Operating Reference
Stations in Minneapolis (Section V.B) and the DGNSS
pseudorange data collected from a slightly urbanized area
in Hong Kong (Section V.C), are employed for bounding
performance comparison. All computations are conducted
on a laptop (Intel Core i7-12700H CPU, 2.30 GHz). A
brief introduction to DGNSS error and positioning is
given in Section V.A.

A. DGNSS Error and Positioning

1. DGNSS error calculation
The double-differenced pseudorange model [30] is

given by

∇∆ρs,ir1,r2 = ∇ρsr1,r2 −∇ρ
i
r1,r2

=
(
rsr1 − rsr2

)
−
(
rir1 − rir2

)
+ εs,ir1,r2 ,

(76)

where ∇ρsr1,r2 is the difference between the pseudorange
measurements of receivers r1 and r2 regarding the satellite
s, ∇ρir1,r2 is the difference between the pseudorange
measurements of receivers r1 and r2 regarding the satellite
i; rsr1 , rsr2 , rir1 , and rir2 are the actual distance between
r1 and s, r2 and s, r1 and i, and r2 and i, respectively;
and εs,ir1,r2 is the DGNSS error. In this work, we assume
s is the master satellite without any loss of generality.
With the double differencing, common errors, including
the receiver clock bias, satellite clock bias, ionospheric
delay, and tropospheric delay, are eliminated. The detailed
derivation of the double-differenced pseudorange model
can refer to Larson’s work [4].

Let xs be the position of satellite s, xi be the position
of satellite i, xr1 be the position of receiver r1, and xr2 be
the position of the receiver r2. xs, xi, xr1 , and xr2 are all
defined in the Earth-Centered, Earth-Fixed (ECEF) frame.
Then (76) can be written as

∇∆ρs,ir1,r2 = (∥xs − xr1∥ − ∥xs − xr2∥)
−
(∥∥xi − xr1

∥∥− ∥∥xi − xr2

∥∥)
+ εs,ir1,r2 .

(77)

The DGNSS errors εs,ir1,r2 can be characterized with the
information of ∇∆ρs,ir1,r2 , xs, xi, xr1 , and xr2 .

2. DGNSS positioning
In this section, we assume that xr2 is known and xr1 =

[x, y, z]
T is the position to be estimated in the DGNSS

positioning. Let x̂r1 = [x̂r1 , ŷr1 , ẑ]
T be the current guess

of xr1 , and then the current guess of ∇∆ρs,ir1,r2 is given
by

∇∆ρ̂s,ir1,r2 = (∥xs − x̂r1∥ − ∥xs − xr2∥)
−
(∥∥xi − x̂r1

∥∥− ∥∥xi − xr2

∥∥) . (78)

Equation (77) can be approximated with the Taylor series
with respect to x̂r1 by

∇∆ρs,ir1,r2 = ∇∆ρ̂s,ir1,r2 +
(
esr1,x − eir1,x

)
σx

+
(
esr1,y − eir1,y

)
σy

+
(
esr1,z − eir1,z

)
σz (79a)
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esr1 =
[
esr1,x esr1,y esr1,y

]T
=
[

x̂r1
−ps

x

∥xs−x̂r1∥
ŷr1

−ps
y

∥xs−x̂r1∥
ẑr1−ps

z

∥xs−x̂r1∥
]T
(79b)

∆x =
[
σx σy σz

]T
, (79c)

where esr1 is known as the line-of-sight (LOS) vector be-
tween the satellite s to the receiver r1, and ∆x = xr1−x̂r1

is the positioning error. The least square (LS) method
is employed to estimate the positions of r1. Assuming
that satellite s is chosen as the master satellite and N
DGNSS measurements are obtained at the current epoch,
the positioning system can be formulated as the following
LS problem:

∆x = argmin
∆x

∥∆ρd −H∆x∥ . (80)

where

∆ρd =

∇∆ρs,1r1,r2 −∇∆ρ̂s,1r1,r2
...

∇∆ρs,Nr1,r2 −∇∆ρ̂s,Nr1,r2

 (81a)

H =


(
esr1 − e1r1

)T
...(

esr1 − eNr1
)T
 . (81b)

The solution of this LS problem is

∆x =
(
HTH

)−1
HT∆ρd , (82)

where
(
HTH

)−1
HT is the solution matrix, as illustrated

in (57) in Section IV.E.

B. CORS DGNSS Error Bounding

1. CORS DGNSS dataset
Inspired by work in [4], this paper utilizes reference

station data from the CORS website run by the National
Geodetic Survey (NGS), specifically from stations MNAV
and ZMP1. These stations are situated near Minneapolis,
with an approximate distance of 11.5 km between them.
The position of the two reference stations is calculated
by Precise Point Positioning [30]. The satellite position
in the ECEF frame is calculated based on the broadcast
ephemeris from NASA’s Archive of Space Geodesy Data
website [31] by utilizing RTKLIB [32]. For each double-
differenced pseudorange in (77), the master satellite is
selected as the satellite with the highest elevation angle
at that time epoch. Our research encompasses data from
January 1st, 2020 to December 31st, 2020. As GPS data
is strongly influenced by the elevation angle, the collected
samples are organized into bins based on elevation angles
every 5◦ from 15◦ to 80◦, which encompasses the highest
elevation angle observed in the data.

2. Comparison of DGNSS error bounding
Fig. 4a shows the quantile-quantile (QQ) plot of

DGNSS errors for elevation angles observed from 30◦

to 35◦ over one month. The QQ plot shows the quantile

of error distribution with the equivalent standard normal
quantile, such that the Gaussian distributed error exhibits
a straight line. As can be seen, the DGNSS error has
heavy tails, which is potentially due to multipath effects.
The CDFs of the two-step Gaussian overbound, Gaussian-
Pareto overbound, and the proposed PGO are plotted in
Fig. 4b. The fitted BGMM of the DGNSS error is also
plotted in Fig. 4b for comparison. Note that the two-
step Gaussian overbound has two parts, i.e., two-step
Gaussian (L) and two-step Gaussian (R), which represent
the overbound at the left region (x < 0) and the right
region (x ≥ 0), respectively. It is shown that the proposed
PGO exhibits a tighter CDF overbound than the two-
step Gaussian overbound in the core region of the error
distribution.

To further analyze the bounding performance at the
tail region, we plot the CDF and complementary cumula-
tive distribution function (CCDF) of each overbounding
method on a logarithmic scale. The logarithmic CDF
in Fig. 4c shows the bounding results at the left tail
region, and the logarithmic CCDF in Fig. 4d demonstrates
the results at the right tail region. It is impressive that
the Gaussian-Pareto overbound shows the sharpest bound
at both the left and right tail regions. This is because
the Gaussian-Pareto overbounding method divides the
samples into two individual parts (core and tail parts) and
bounds each part separately. In the tail part bounding, the
Gaussian-Pareto overbounding method uses the general-
ized Pareto distribution, which is especially suitable for
modeling extreme tails that extend beyond the range of
available data [4]. The PGO shows moderate bounding
performance at the tail region, which has a tighter bound
than the two-step Gaussian overbound but not as tight as
the Gaussian-Pareto overbound. However, the PGO has its
own advantages in that its overbounding property can be
preserved through convolution, which is essential in the
range-to-position projection process and the calculation
of PLs. It is worth noting that the fitted BGMM fails to
overbound the sample distribution, as shown in the region
of x ∈ [4m, 5m] in Fig. 4d. This is because the fitted
BGMM can only fit the overall pattern of the sample
distribution and is not guaranteed to bound the sample
distribution. The parameters of the Principal Gaussian,
two-step Gaussian, and Gaussian-Pareto overbounding
methods are listed in Appendix H.

Fig. 5 shows the bounding results of DGNSS errors for
elevation angles observed from 30◦ to 35◦ over the course
of one year. The extension of the data collection period in-
creases the chances of observing more extreme data. The
maximum absolute DGNSS error reaches 8.64m, which
is around 21% larger than that observed in the one-month
DGNSS error data (7.12m in this case). Nevertheless, the
PGO still yields a considerably tight bound in the core
region and shows moderate overall bounding performance
among the three overbounding methods.

Fig. 6 shows the bounding results of DGNSS errors
for the elevation angle bin of 60◦ to 65◦ over one year.
In this case, the sample distribution is not significantly
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Fig. 4. (a) The QQ plot of CORS DGNSS errors for elevation angles observed from 30◦ to 35◦ over one month; and the distribution of three
overbounding methods in three views: (b) CDF; (c) CDF plotted on a logarithmic scale; (d) complementary cumulative distribution function

(CCDF) plotted on a logarithmic scale, where “Two-step Gaussian (L)” and “Two-step Gaussian (R)” represent the two-step Gaussian overbound
at the left region and the right region, respectively.

-6 -4 -2 0 2 4 6 8

Quantiles of error distribution (m)

-5

0

5

S
ta

n
d

ar
d

 n
o

rm
al

 q
u

an
ti

le
 (

m
)

1 year of DGNSS Errors (Elev.: 30°  35°)

(a)

-10 -8 -6 -4 -2 0 2 4

Error (m)

10
-6

10
-4

10
-2

10
0

C
D

F
 (

lo
g

 s
ca

le
)

1 year of DGNSS Errors (Elev.: 30°  35°)

Sample dist.

Two-step Gaussian

Gaussian-Pareto

BGMM fitting

Principal Gaussian

(b)

-4 -2 0 2 4 6 8 10

Error (m)

10
-6

10
-4

10
-2

10
0

C
C

D
F

 (
lo

g
 s

ca
le

)
1 year of DGNSS Errors (Elev.: 30°  35°)

Sample dist.

Two-step Gaussian

Gaussian-Pareto

BGMM fitting

Principal Gaussian

(c)

Fig. 5. (a) The QQ plot of CORS DGNSS errors for elevation angles observed from 30◦ to 35◦ over one year; and the distribution of three
overbounding methods in two views: (b) CDF plotted on a logarithmic scale; (c) CCDF plotted on a logarithmic scale, where “Two-step

Gaussian (L)” and “Two-step Gaussian (R)” represent the two-step Gaussian overbound at the left region and the right region, respectively.

heavy-tailed, as suggested by the QQ plot in Fig. 6a.
One potential explanation is that the underlying error
sources contributing to the heavy tail in the GNSS er-
ror distribution, such as multi-path or significant atmo-
spheric disturbances, are absent at high elevation angles.
This phenomenon is also observed in Larson’s work on
DGNSS error bounding [4]. In such a situation, there
seems to be no significant difference among the three
overbounding methods, as shown in Fig. 6b and Fig.
6c. Therefore, it is recommended to use the Gaussian
overbound when the sample distribution does not exhibit
heavy-tailed properties, as the Gaussian overbound has

fewer parameters to determine. The bounding results of
one-year DGNSS error in every 5◦ from 15◦ to 80◦ can
refer to Appendix K (a masking angle of 15◦ is applied),
where similar conclusions are drawn.

C. Urban DGNSS Error Bounding

1. Urban DGNSS dataset
To comprehensively validate the proposed method, we

conducted an additional experiment on an urban dataset,
which is collected from a slightly urbanized area in Hong
Kong, as shown in Fig. 7. The term ”slightly urbanized”

YAN ET AL.: PRINCIPAL GAUSSIAN OVERBOUND 13
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Fig. 6. (a) The QQ plot of CORS DGNSS errors for elevation angles observed from 60◦ to 65◦ over one year; and the distribution of three
overbounding methods in two views: (b) CDF plotted on a logarithmic scale; (c) CCDF plotted on a logarithmic scale, where “Two-step

Gaussian (L)” and “Two-step Gaussian (R)” represent the two-step Gaussian overbound at the left region and the right region, respectively.

indicates that the vicinity of the receiver’s position is not
dominated by high-rise buildings. As can be seen, the re-
ceiver is located along the sea, and buildings in nearshore
areas may block or reflect satellite signals, resulting in
a multipath effect. Fig. 7 also shows the setup of the
experimental platform. The U-blox Zed F9P is employed
to collect L1 GPS, BeiDou, and GLONASS signals at a
frequency of 1 Hz, producing a dataset with a duration of
57 minutes. The receiver’s location is determined by real-
time kinematic (RTK) positioning [32]. The filter type
is the combined mode, the integer ambiguity resolution
is fix and hold mode, and the ratio to fix ambiguity is
set to be 5. The final fix rate is 95.5%. The satellite
position in the ECEF frame is calculated based on the
broadcast ephemeris from Hong Kong Geodetic Survey
Services [33] by utilizing RTKLIB [32].

Fig. 7. The experimental environment and platform for collecting
urban DGNSS data.

Fig. 8 plots the absolute DGNSS errors against the ele-
vation angle and signal-to-noise ratio (SNR) related to the
receiver. In this experiment, the DGNSS measurements
with the elevation angle larger than 30◦ and SNR greater
than 35 dB are selected for DGNSS positioning. Within
this interval, the DGNSS measurement appears to be free
of faults since its error is limited in a reasonable range
where the maximum absolute error is around 13.25m.
Appendix I shows the histogram of DGNSS error with
SNR greater than 35 dB and elevation angles larger than
30◦ in each 5◦ elevation angle bin. We select the DGNSS

error for elevation angles observed from 30◦ to 35◦ for
analysis in the following sections, whose mean value is
nearly zero. The DGNSS errors in bins 35◦ ∼ 40◦ and
50◦ ∼ 55◦ also have nearly zero mean values. Their
bounding results are presented in Appendix J due to the
space limit.
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Fig. 8. The absolute DGNSS errors in the urban dataset against the
elevation angle and signal-to-noise ratio related to the receiver. The

color bar represents the magnitude of the absolute DGNSS errors and
is plotted on a logarithmic scale.

2. Comparison of DGNSS error bounding
Fig. 9a shows the QQ plot of urban DNGSS error

for elevation angles observed from 30◦ to 35◦, where a
significant heavy-tailed phenomenon is observed. In this
case, the proposed PGO shows the sharpest bounding
performance in the core region among all the three
methods, as shown in Fig. 9b. In the tail region, the PGO
has a tighter bound than the two-step Gaussian overbound,
as shown in Fig. 9c and Fig. 9d. The Gaussian-Pareto
overbound shows the best bounding performance in the
tail and core regions, but it also shows extreme asymmetry
in the left and right side tail regions. This asymmetry
is actually attributed to the asymmetry of the sample
distribution whose left tail is much heavier than the right
tail, as shown in Fig. 9c and Fig. 9d. The Gaussian-
Pareto overbounding method bounds the left and right
tails separately, thereby resulting in different bounding
results on the two sides. This asymmetry causes diffi-
culties in preserving the overbounding properties after
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Fig. 9. (a) The QQ plot of urban DGNSS errors for elevation angles observed from 30◦ to 35◦; and the distribution of three overbounding
methods in three views: (b) CDF; (c) CDF plotted on a logarithmic scale; (d) CCDF plotted on a logarithmic scale, where “Two-step Gaussian

(L)” and “Two-step Gaussian (R)” represent the two-step Gaussian overbound at the left region and the right region, respectively.

convolution, making it impossible to calculate the PL.
This, on the other hand, highlights the benefits of applying
the proposed method to bound the extremely heavy-tailed
distribution, as it enables the computation of PL for
integrity-assured applications.

3. Comparison of position error bounding
Fig. 10a shows a time series of VPE produced by

the DGNSS positioning method (Section V.A). The mean
VPE is 0.65m and the maximum VPE is 6.44m. The
VPL (with PHMI = 10−9) of the positioning results
from the two overbounding methods, including the PGO
and the two-step Gaussian overbound, is also plotted in
the figure. The VPL is calculated based on the worst-
case DGNSS error distribution, i.e., the error distribution
shows the largest variance. In this experiment, the worst-
case DGNSS error distribution is given by the error for
elevation angles observed from 30◦ to 35◦. In the PGO
approach, the discretization parameters in the VPL calcu-
lation are set as T = 0.01m and 2L−1 = 6001, as defined
in Section IV.E. A discussion about the choice of T is
given in Appendix E. The Gaussian-Pareto overbound is
not taken for comparison since its overbounding property
cannot be preserved through convolution.

As shown in Fig. 10a, the PGO yields a significantly
smaller VPL than the two-step Gaussian overbound at
every epoch. Table I lists the reduction of VPL by the
PGO. The mean VPL is reduced by more than 78%
while the maximum reduction even reaches 80%. The
triangular charts in Fig. 10c and Fig. 10d show that

integrity is preserved for both overbounding methods.
However, the VPL yielded by the PGO is smaller and
exhibits a higher concentration level than that of the two-
step Gaussian overbound. These plots indicate that the
PGO can significantly reduce PLs without compromising
integrity.

TABLE I
The reduction of VPL by the Principal Gaussian overbound compared

to the two-step Gaussian overbound

Min Max Mean Median

72.27% 80.48% 78.61% 78.79%

Fig. 10b plots the computation time of VPL with
the PGO against the number of DGNSS measurements
through the Monte Carlo simulation. For fifteen mea-
surements, the mean computation time is only 0.08 s,
which is well acceptable for a personal computer. The
small computation load is achieved by using the fast
Fourier transform to calculate the overbound distribution
in the position domain instead of using direct convolution
operations, as shown in (73).

VI. DISCUSSION

A. Impacts of the Partition Parameter

In this section, we discuss the impacts of parameter
setting on the performance of the PGO. Here, the PGO
refers to the one without sigma inflation. This is because
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Fig. 10. (a) The time series of VPE and VPL with PHMI = 10−9; (b) The computation time of VPL with the Principal Gaussian overbound
against the number of DGNSS measurements; (c) The triangular chart of integrity monitoring based on the Principal Gaussian overbound; (d)

The triangular chart of integrity monitoring based on the two-step Gaussian overbound.

the sigma inflation will change the parameters of the
original PGO, which makes the analysis complicated.

The PGO is determined by four parameters, including
σ1, σ2, p1, and the core-tail transition point xrp, where
σ1, σ2, and p1 are determined by the fitted BGMM, and
xrp is determined by the partition parameter α, which
needs to be specified. Fig. 11a plots the PGO of the 1-
month CORS DGNSS errors (30◦ ∼ 35◦) with different
settings of α in terms of CCDF. It is impressive that the
overbounding results are almost the same regardless of the
change of α. In (29), α can be interpreted as the threshold
for the relative error between the kurtosis of the truncated
BGMM and the truncated standard normal distribution.
When the relative kurtosis error at the intersection point
of s1(x) and s2(x) is very small (even smaller than α),
the core-tail transition point will be set as the intersection
point, as indicated by the first line of (29). Since the
CORS DGNSS error (30◦ ∼ 35◦) is slightly heavy-tailed,
its core part is almost Gaussian distributed. Therefore, the
relative kurtosis error at the intersection point of s1(x) and
s2(x) is very small. As a result, the core-tail transition
point will be set as the intersection point of s1(x) and
s2(x) regardless of the change of α, which completely
determines the parameters of the PGO. Therefore, dif-
ferent α yields almost the same overbounding results, as
observed in Fig. 11a.

The situation in the urban DGNSS error bounding is
different. The PGO for urban DGNSS errors (30◦ ∼ 35◦)
with different settings of α is plotted in Fig. 11b. The

CDF plot is chosen instead of the CCDF plot because the
left tail of the urban DGNSS error is much heavier than
the right tail, as shown in Fig. 9a. From Fig. 11b, it is
observed that the change in the bounding performance of
the PGO has two stages: In the first stage (α ≤ 0.14), the
tail of PGO becomes sharper with the increase of α; In the
second stage (α > 0.14), the tail of PGO almost ceases
to change with the increasing α. The changing pattern in
the first stage can be attributed to the significant heavy-
tailedness of the urban DGNSS error distribution, which
leads to a significant heavy tail of the fitted BGMM.
Therefore, the relative kurtosis error is extremely large
at the intersection point of s1(x) and s2(x). When α
takes a smaller value than the relative kurtosis error at
the intersection point, the core-tail transition point will
be purely determined by α, as shown in the second line
of (29). Under this condition, the increase of α will push
the core-tail transition point to the far end (but not as
far as the core-tail transition point), which can be easily
observed in Fig. 11b. However, when α becomes too large
and enters the second stage, the relative kurtosis error at
the intersection point will be smaller than α. As a result,
the core-tail transition point will be set as the intersection
point of s1(x) and s2(x) regardless of the change of
α, which explains the pattern in the second stage. The
thumbnail in Fig. 11b shows the bounding conditions
in the region [−3.3m,−2.6m]. When α is larger than
0.06, the number of unbounded samples increases with
the increase in α. This could be explained by the fact that
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Fig. 11. The Principal Gaussian overbound (without sigma inflation)
of (a) 1-month CORS DGNSS errors; and (b) urban DGNSS errors

for elevation angles observed from 30◦ to 35◦.

the 2nd Gaussian component has an increasing impact
on the core region with the increasing α, as illustrated
in Section IV.B. In this case, the sigma inflation has
to be implemented to ensure that the PGO can bound
the sample distribution. However, the sigma inflation
strategy unavoidably increases the conservatism of the
PGO. Therefore, when bounding errors with significantly
heavy tails, a small α is preferred to partition the core
and tail regions. In this study, we take α = 0.05 in the
urban DGNSS experiments, which realize a good balance
of dominance partition and overbounding.

B. Mean Bias Problems

The proposed PGO assumes that the error distribution
has a zero mean, which is valid under open-sky conditions
but may not always hold in urban areas due to non-line-
of-sight (NLOS) and multipath. Therefore, this section
discusses the effects of non-zero mean on the bounding
results of the proposed PGO, intuitively illustrating the
inapplicable situations for the proposed approach.

As shown in the histogram in Appendix I, the urban
DGNSS error for elevation angles observed from 40◦ to
45◦ has a mean value of −0.26m, which is taken for
further analysis. Fig. 12 shows the Principal Gaussian
overbounds before and after sigma inflation of the error
distribution. The sigma inflation is designed to stop early

at the 50th iteration. As can be seen, the PGO without
sigma inflation fails to bound the entire left region of
errors, while the PGO with sigma inflation fails to bound
the left-core region (−0.5 ∼ 0 m). Although we can keep
inflating the PGO with more iterations in Algorithm 1,
the overbounding condition will not be satisfied. This
could be explained by some derivations as the following.
According to (39c), Gcore

o (0) = 0.5. Since CDF is a
monotonically increasing function, we have

Gcore
o (x) < Gcore

o (0) = 0.5,∀x < 0 . (83)

Denote G(x) as the CDF of the error distribution in Fig.
12. Assume G(x∗) = 0.5, and then it is obvious that
x∗ < 0. Therefore,

Gcore
o (x∗) < G(x∗) , (84)

indicating that the bounding condition at the left region
of errors is violated. Therefore, the proposed method is
theoretically inapplicable to error distributions with non-
zero mean. The results in Fig. 12 provide an intuitive
example of the limitations of the proposed method.
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Fig. 12. The CDF of the PGO for urban DGNSS errors for
elevation angles observed from 40◦ to 45◦. Since the overbounding
conditions cannot be satisfied, the sigma inflation is designed to stop

early at the 50th iteration.

C. Opportunities in Fault Detection

Ensuring a unified distribution that encompasses fault
detection, overbounding, and PL calculation is crucial
for integrity monitoring. To the authors’ best knowledge,
the Gaussian distribution is the sole viable option for
implementing this harmonized framework. However, the
PGO proposed in this study holds the potential to emerge
as a compelling alternative. The bounding performance of
the PGO in both range and position domains is already
illustrated in Section V. In this section, we briefly discuss
the feasibility of employing the PGO for fault detection.

One of the most straightforward approaches would
be the maximum solution separation algorithm [34]–
[36]. Since the maximum solution separation is a linear
combination of measurement errors, its distribution can be
obtained by taking convolutions if the measurement errors
are assumed to be mutually independent. The detection
threshold is given by the quantile of the distribution
of the maximum solution separation. Furthermore, the
computation load can be reduced by using the fast Fourier
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transform to replace convolution operations, as shown
in (73). Other approaches geared toward Gaussian dis-
tributed errors, such as the Chi-squared test [1], [37], [38],
are not so straightforward to apply. However, the PGO
has an explicit distribution, which potentially provides
the theoretical foundation to conduct statistical analysis
and hypothesis tests. The development of fault detection
algorithms based on the PGO goes beyond the scope of
this paper and will be considered in our future work.

VII. CONCLUSIONS

This study proposes the PGO for bounding heavy-
tailed error distribution. Specifically, the BGMM is em-
ployed to fit the error distribution based on the EM algo-
rithm. The CDF overbound of the BGMM is constructed
based on the dominant relationship of each Gaussian
component at the core and the tail region of the BGMM,
respectively. In addition, a sigma inflation strategy is
proposed to compensate the PGO, which allows it to
bound the sample distribution as well as the fitted BGMM.
The overbounding property is proven to be preserved
through convolution, which makes it possible to derive
pseudorange-level requirements from the position domain
integrity requirements. The experimental results on the
CORS and urban datasets show that the PGO provides the
most competitive bounding performance for heavy-tailed
DGNSS error, yielding a sharp bound in the core part of
the error distribution. Compared to the two-step Gaussian
overbounding method, the proposed method reduces the
mean VPL by more than 78% without compromising
integrity on the urban dataset. In addition, the computation
load of calculating VPL is reduced by employing the
fast Fourier transform, where the mean computation time
is only 0.08 s with fifteen measurements. These results
suggest the substantial potential of the PGO in GNSS ap-
plications with strict integrity and real-time requirements.

Although the PGO demonstrates promising bounding
performance for heavy-tailed distributions, it does possess
limitations when confronted with biases in error distribu-
tions. This issue is non-trivial, particularly within the con-
text of GNSS error bounding. Possible solutions include
employing paired overbounding methods and introducing
bias terms to the BGMM. However, it is necessary to
conduct a thorough analysis of the property of convolu-
tion preservation to ensure that these modifications are
applicable for integrity applications, which will be the
main focus of our future research.

Appendix A
The EM algorithm

The PDF of a K-component GMM model with mix-
ture weights of p1, p2,..., pK can be written as

f (x| Θ) =

K∑
k=1

pkfN (x; bk, σk) , (85)

where Θ represents all parameters, including each Gaus-
sian component’s mixture weight, mean, and variance. For
a given observation xi, we define the allocation (latent)
variable c = {1, 2, . . . ,K} that marks the Gaussian
component from which xi is generated. Then, the mixture
weight of Gaussian components can be interpreted as the
prior probability of the allocation variable as follows,

pk = P (c = k) . (86)

The membership weight of the GMM can be defined
based on Bayes’ Theorem as follows,

wi,k = P (c = k|xi)

=
pkfN (xi; bk, σk)∑K
k=1 pkfN (xi; bk, σk)

,
(87)

which indicates the posterior probability of a data point xi

being generated from the kth Gaussian component. The
log-likelihood function can be written as

L (x|Θ) =

N∑
i=1

ln

K∑
k=1

P (xi|c = k, bk, σk)P (c = k) .

(88)
By utilizing Jensen’s inequality [39], the above equation
can be simplified as

L (x|Θ) ≥Q (x|Θ) , (89a)

Q (x|Θ) =

N∑
i=1

K∑
k=1

wi,kln
pkfN (xi; bk, σk)

wi,k
(89b)

=

N∑
i=1

K∑
k=1

wi,k

(
ln pk −

(xi − bk)
2

2σ2
k

− lnwi,k − ln
√
2πσ2

k

)
,

where Q (x|Θ) is the lower bound of L (x|Θ). Therefore,
the model parameters of GMM can be estimated by
maximizing Q (x|Θ), which can be effectively achieved
by the EM algorithm [16]. The EM algorithm is an
iterative supervised training algorithm consisting of two
steps: the E-step and the M-step. Firstly, the model
parameters are randomly initialized. In the E-step, the
algorithm calculates the value of membership weight
wi,k based on the latest model parameters, as shown in
(87). In the M-step, the algorithm updates the model
parameters based on the value of wi,k. In this step, the
log-likelihood function is maximized by taking the partial
derivative over the model parameters Θ and letting the
partial derivative equal to zero. The two steps are repeated
until convergence is reached.

Appendix B
PROOF OF TAIL REGION OVERBOUND

Recall that Section IV.C constructs the overbound
distribution in the left-tail region as follows:

GL
o(x) = (1 + k) (1− p1)G (x; 0, σ2) ∀x < xlp . (90)

The difference between GL
o(x) and G(x) is given by

GL
o(x)−G(x) = k (1− p1)G (x; 0, σ2)− p1G (x; 0, σ1) . (91)
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By substituting (35) into (91),
GL

o(x)−G(x) =
p1

G
(
xlp; 0, σ2

)(G (
xlp; 0, σ1

)
G (x; 0, σ2)

−G (x; 0, σ1)G
(
xlp; 0, σ2

))
.

(92)

If GL
o(x) is the CDF overbound of G(x), then the

right-hand side of (92) should be non-negative, which is
equivalent to prove

G (xlp; 0, σ1)

G (xlp; 0, σ2)
>

G (x; 0, σ1)

G (x; 0, σ2)
∀x < xlp . (93)

Let f(x) = G(x;0,σ1)
G(x;0,σ2)

, then the derivative of f(x) is given
by

f
′
(x) =

fN (x; 0, σ1)G (x; 0, σ2)− fN (x; 0, σ2)G (x; 0, σ1)

G2 (x; 0, σ2)
.

(94)
Define

m (σ;x) =
fN (x; 0, σ)

G (x; 0, σ)
=

1
σ
√
2π

exp
(
− x2

2σ2

)
1
2

[
1 + erf

(
x

σ
√
2

)] (95a)

∀σ > 0, x < xlp ,

h (γ;x) = m

(
− 1

γ
;x

)
∀γ < 0, x < xlp . (95b)

Then h (γ;x) can be written as

h (γ;x) =

γ

−
√
2π

exp

(
− γ2

2(− 1
x )

2

)
1
2

[
1 + erf

(
γ

(− 1
x )

√
2

)]

=

γ
x ·

1

(− 1
x )

√
2π

exp

(
− γ2

2(− 1
x )

2

)
1
2

[
1 + erf

(
γ

(− 1
x )

√
2

)]

=
1

x
· γ

fN

(
γ; 0,

(
− 1

x

)2)
G
(
γ; 0,− 1

x

) .

(96)

Define λ(γ) =
fN(γ;0,(− 1

x ))
G(γ;0,− 1

x )
, which is known as the

inverse Mills ratio [40] and has the following properties
[41]:

λ(γ) ≥ 0 ∀γ (97a)

λ
′
(γ) < 0 ∀γ . (97b)

Then the partial derivative of h (γ;x) with respect to γ
can be calculated as

∂h (γ;x)

∂γ
=

1

x

[
λ(γ) + γλ

′
(γ)
]
. (98)

According to the chains rule,
∂m (σ;x)

∂σ
=

∂h
(
− 1

σ
;x

)
∂σ

=
∂h

(
− 1

σ
;x

)
∂γ

·
∂
(
− 1

σ

)
∂σ

=
1

x

[
λ

(
−

1

σ

)
−

1

σ
λ
′
(
−

1

σ

)]
1

σ2
.

(99)

When x < 0, we can easily prove that ∂m(σ;x)
∂σ < 0.

This means that m (σ;x) is a monotonically decreasing
function when x < 0. Therefore,

m (σ1;x) =
fN (x; 0, σ1)

G (x; 0, σ1)
>

fN (x; 0, σ2)

G (x; 0, σ2)

= m (σ2;x) ∀σ2 > σ1 > 0, x < 0 .

(100)

This is equivalent to saying that (94) has the property as
follows:

f
′
(x) > 0 ∀σ2 > σ1 > 0, x < 0 . (101)

Equation (101) indicates that f(x) is a monotonically
increasing function when x < 0, and therefore (93) is
proved. Then, we can conclude that GL

o(x) is the CDF
overbound of G(x) when x < xlp. According to the
symmetric property of GL

o(x) and GR
o (x), GR

o (x) is easy to
be proved as the CDF overbound of G(x) when x > xrp.
This ends the proof.

Appendix C
PROOF OF MONOTONICITY

In the PGO, its PDF discontinues at the core-tail
transition points xlp and xrp. The value of the leap at
xlp can be written as

f core
o (xlp)− fL

o (xlp)

= − (1 + k) (1− p1) fN (xlp; 0, σ2)

+ p1fN (xlp; 0, σ1) + c .

(102)

Define
k∗ =

p1fN (xlp; 0, σ1)

(1− p1) fN (xlp; 0, σ2)
. (103)

As proved in (100) in Appendix B,
fN (x; 0, σ1)

G (x; 0, σ1)
>

fN (x; 0, σ2)

G (x; 0, σ2)
∀σ2 > σ1 > 0, x < 0 .

(104)
We have

k∗ =
p1fN (xlp; 0, σ1)

(1− p1) fN (xlp; 0, σ2)

>
p1G (xlp; 0, σ1)

(1− p1)G (xlp; 0, σ2)

= k > 0 ∀σ2 > σ1 > 0, x < 0 .

(105)

Therefore,
f core
o (xlp)− fL

o (xlp)

>− (1 + k∗) (1− p1) fN (xlp; 0, σ2)

+ p1fN (xlp; 0, σ1) + c .

(106)

Substituting (40) and (103) into (106), we have

f core
o (xlp)− fL

o (xlp) >
1− p1
xlp

(
G (xlp; 0, σ2)

−xlpfN (xlp; 0, σ2)− 0.5
)
.

(107)
Define

g (xlp) = G (xlp; 0, σ2)− xlpfN (xlp; 0, σ2)− 0.5 , (108)

then its first derivative can be calculated as

g
′
(xlp) =

(
1 +

x2
lp

σ2
2

)
fN (xlp; 0, σ2) > 0 . (109)

Since g(0) = 0, we have

g (xlp) < 0 ∀xlp < 0 . (110)

Therefore, (107) can be written as

f core
o

(
xlp

)
− fL

o

(
xlp

)
>

1− p1

xlp
g
(
xlp

)
> 0 ∀xlp < 0 . (111)
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Since

fL
o

′
(x) = −

x

σ2
2

(1 + k) p2fN (x; 0, σ2) > 0 ∀x < xlp (112a)

f core
o

′
(x) = −

x

σ2
1

p1fN (x; 0, σ1) > 0 ∀xlp < x < 0 , (112b)

we can conclude that fo(x) is a monotonically increasing
function when x < 0.

Appendix D
PROVE TO EQUATION (62)

Let Yi = s3,i∆ρi be a new random variable. The CDF
of Yi is given by

FYi
(y) = P (Yi < y) = P

(
∆ρi <

y

|s3,i|

)
=

∫ y/|s3,i|

−∞
fri(x) dx .

(113)

Let t = |s3,i|x, then we have

FYi
(y) =

1

|s3,i|

∫ y

−∞
fri

(
t

|s3,i|

)
dt . (114)

Appendix E
IMPACTS OF SAMPLE INTERVAL

To investigate the impacts of T on the position error
bounding performance, we choose different T , including
0.01m, 0.05m, 2m, 5m, and 10m, to calculate the VPL
for the vertical positioning error in urban DGNSS exper-
iment. In each setting, we keep T ×L = 30, which is the
value of x2L−1. For example, in the setting of T = 0.05m,
L should be 600. Fig. 13 shows the time series of VPE
produced by the DGNSS positioning method. The VPL
calculated based on the PGO with different T is also
plotted for comparison. The VPL gradually increases with
the increase in T , as expected. This is because a large T
would result in an over-conservative discrete overbound
for Fo,Yi [n], which consequently increases the VPL. In
addition, we notice that the VPL with T = 0.01m and
T = 0.05m are almost the same, which means there is
little room to reduce the VPL by reducing T when T is
already less than 0.01m.
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Fig. 13. The time series of VPE and VPL based on the Principal
Gaussian overbound with different settings of T . PHMI = 10−9.

Appendix F
SIGMA INFLATION ALGORITHM

Algorithm 1 shows the pseudocode of the sigma
inflation algorithm.

Algorithm 1 Sigma Inflation
Input:

Empirical CDF of Samples: Gn(x)
Parameters of the before-inflation PGO: p1, σ1, σ2,
xlp, xrp

Output:
Inflated sigma: σ∗

1 , σ∗
2

1: Initialize the inflation factor: τ1 = 1.01, τ2 = 1.01
2: Core condition: Ξcore ← Gcore

o (x) ≥ Gn(x) ∀xlp <
x < 0 AND Gcore

o (x) ≤ Gn(x) ∀0 < x < xrp

3: Tail condition: Ξtail ← GL
o(x) ≥ Gn(x) ∀x ≤

xlp AND GR
o (x) ≤ Gn(x) ∀x ≥ xrp

4: while Ξcore is false OR Ξtail is false do
5: if Ξcore is false then
6: σ1 ← τ1 ∗ σ1

7: end if
8: Update the tail condition Ξtail with the latest PGO

parameter
9: if Ξtail is false then

10: σ2 ← τ2 ∗ σ2

11: σ1 ← (50)
12: end if
13: Update the core condition Ξcore with the latest

PGO parameter
14: Update the tail condition Ξtail with the latest PGO

parameter
15: end while
16: σ∗

1 ← σ1, σ∗
2 ← σ2

Appendix G
STEPS FOR IMPLEMENTING PRINCIPAL
GAUSSIAN OVERBOUND

Algorithm 2 shows the implementation of the Princi-
pal Gaussian overbound.

Algorithm 2 Implementation of Principal Gaussian Over-
bound
Input:

Error data: X = {x1, x2, · · · , xn}
Partition parameter: α

Output:
Parameters of PGO: p1, σ∗

1 , σ∗
2 , xlp, xrp

1: Fit a BGMM
f(x) = p1fN (x; 0, σ1) + (1− p1) fN (x; 0, σ2)
← Employ EM algorithm with X

2: xlp, xrp ← Dominance partition by (29), (30)
3: k ← Calculate the scaling parameter by (35)
4: c← Calculate the shifting parameter by (40)
5: σ∗

1 , σ
∗
2 ← Algorithm 1 with p1, σ1, σ2, xlp, xrp
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Appendix H
PARAMETERS OF THREE METHODS

TABLE II
Parameters of the Principal Gaussian, two-step Gaussian, and Gaussian-Pareto overbounding methods on different datasets

Datasets

Dataset name CORS DGNSS CORS DGNSS CORS DGNSS Urban DGNSS

Time Span 1 month 1 year 1 year 57 minutes

Elevation angle 30◦ ∼ 35◦ 30◦ ∼ 35◦ 60◦ ∼ 65◦ 30◦ ∼ 35◦

No. of samples 49,779 602,724 322,462 4,324

Principal
Gaussian

σ1 0.965 0.984 0.678 0.817

σ2 1.820 1.992 1.091 3.811

p1 0.635 0.696 0.794 0.900

xrp 1.751 1.983 1.654 1.653

Two-step
Gaussian

(bL, bR) (0.168, 0.168) (0.188, 0.188) (0.021, 0.021) (2.895, 2.895)

(σL, σR) (1.751, 1.751) (1.898, 1.898) (1.035, 1.035) (3.351, 3.351)

Gaussian
Pareto

σGP 1.251 1.557 0.869 0.954

(uL, uR) (−1.780, 2.006) (−3.813, 4.893) (−1.284, 1.408) (−1.003, 1.126)

(γL, γR) (−0.063,−0.052) (0.022, 0.086) (−0.036,−0.007) (0.204, 0.307)

(βL, βR) (0.579, 0.646) (0.349, 0.598) (0.384, 0.387) (0.795, 0.257)

Appendix I
DISTRIBUTION OF THE URBAN DATASET

Fig. 14. The histogram of the urban DGNSS error with the SNR larger than 35 dB and the elevation angle larger than 30◦ in each 5◦

elevation angle bin. The mean value of the DGNSS error and the amount of samples in each bin are presented in the title of each subplot. The
bins with less than 5 samples are not plotted.
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Appendix J
ADDITIONAL BOUNDING RESULTS OF URBAN DGNSS ERRORS

Fig. 15 shows the bounding results of urban DGNSS errors for elevation angles observed from 35◦ to 40◦. Similar
to the results in Section V.C.2, the PGO still yields a considerably tight bound in the core region and shows moderate
overall bounding performance among the three overbounding methods. Fig. 16 shows the bounding results of urban
DGNSS errors for elevation angles observed from 50◦ to 55◦, where the sample distribution is not significantly heavy-
tailed. Similar to the bounding results of CORS DGNSS error with high elevation angles (60◦ ∼ 65◦) in Section
V.B.2, the three overbounding methods show slight difference. Therefore, the Gaussian overbound is recommended
due to its simplicity.
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Fig. 15. (a) The QQ plot of urban DGNSS errors for elevation angles observed from 35◦ to 40◦; and the distribution of three overbounding
methods in two views: (b) CDF plotted on a logarithmic scale; (c) CCDF plotted on a logarithmic scale, where “Two-step Gaussian (L)” and

“Two-step Gaussian (R)” represent the two-step Gaussian overbound at the left region and the right region, respectively.
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Fig. 16. (a) The QQ plot of urban DGNSS errors for elevation angles observed from 50◦ to 55◦; and the distribution of three overbounding
methods in two views: (b) CDF plotted on a logarithmic scale; (c) CCDF plotted on a logarithmic scale, where “Two-step Gaussian (L)” and

“Two-step Gaussian (R)” represent the two-step Gaussian overbound at the left region and the right region, respectively.
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Appendix K
ALL ELEVATION ANGLE RESULTS
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Fig. 17. Overbounding results for 1-year CORS DGNSS errors in each 5◦ elevation angle bin. The case of bin 30◦ ∼ 35◦ is not present due to
the space limit. One can refer to Fig. 5 for the results of bin 30◦ ∼ 35◦. In addition, the results of bin 80◦ ∼ 85◦ and 85◦ ∼ 90◦ are not present
because the number of samples in these bins is less than 1,300, which is less than the minimum requirement in the Gaussian-Pareto overbound.
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