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 Abstract—Accurate and reliable localization is of great 

importance for autonomous vehicles (AV). Mainstream 

localization approaches in autonomous vehicles (AV) are limited 

by the reliability of onboard sensors, which could be vulnerable 

to sensor failure, such as signal outages of the camera and signal 

spoofing of the global navigation satellite systems (GNSS). 

Different from these active or passive sensors, the vehicle 

dynamic model (VDM), which is the application of physical laws 

to a vehicle in motion, is environmentally independent and is 

capable of providing vehicle motion estimation continuously. 

However, the performance of the VDM-based motion estimation 

is dominated by the accuracy of the system dynamics model. To 

tackle this issue, this study proposes a sensor-free localization 

method VDM-SI by integrating system identification into the 

design of vehicle dynamic models (VDM). A system identification 

process based on low-order process models is proposed to 

identify the system dynamics of the AV, where the identified 

system responses are taken as the control input of VDM to 

estimate the vehicular positioning. The localization experiments 

in two scenarios show that the mean absolute translation error of 

VDM-SI can be reduced by 70% compared to conventional VDM 

methods. In addition, VDM-SI is experimentally proven to 

improve the localization performance of sensor fusion-based 

localization systems with high noise levels. Furthermore, in the 

application of re-localization after sensors fail and recover, 

VDM-SI shows strength in enhancing the security of AVs in 

extreme conditions. 

 

Index Terms—Autonomous vehicles, localization, sensor failure, 

system identification, vehicle dynamic models.   

I. INTRODUCTION 

utomated Driving Systems (ADS) and their carrier, 

autonomous vehicles (AV), have received increasing 

and close attention from academia and industry [1], 

[2]. Among the four basic components of AVs, 

including localization, perception, planning, and control 

module [3], [4], localization plays a fundamental role in 

providing essential information for the successful execution of 

other modules. Specifically, accurate localization can roughly 

define and reduce the searching space of perception tasks [5] 

and provide the initial constraint for the planning module to 

generate feasible trajectories [6], [7]. More importantly, 

localization plays a vital role in generating collision-free 

trajectories, which ensures safe navigation [8]. Research 

works on the localization of AV can be mainly divided into 
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two categories based on the utilized sensors, including active 

or passive sensors-based localization and environmentally 

independent VDM-based localization. The former relied on 

the quality of the measurements collected by sensors affected 

by the environments. The latter is environmentally 

independent but relies on the modeling of the system 

dynamics.  

 
Fig. 1. A scenario where the GNSS receiver, LiDAR, camera, and IMU may 

fail simultaneously. GNSS signals are blocked when the AV is running in a 

tunnel. LiDAR detection is affected by raindrops. The performance of 

cameras degrades under low illumination. The vehicle is running on a gravel 

road with some pits, where IMU may fail in such highly vibrating conditions. 

Acoustic injection attacks will cause malfunctions in IMU. The AV produces 

inaccurate localization results with sensor failures, facing a high risk to 

collide. 

 

Active or passive sensors-based localization methods: In 

mainstream localization solutions in AVs, sensor-based 

approaches are dominant and can provide reliable localization 

results in most scenarios. Global navigation satellite system 

(GNSS) receivers [9], light detection and ranging (LiDAR) 

[10], cameras [11], and inertial measurement units (IMU) [12] 

are the most commonly used sensors in these solutions. 

However, there still exists extreme cases that human drivers 

can easily handle, but AVs are unable to manage due to the 

inherent limitations of these sensors [13]. Fig. 1 shows a 

scenario where the GNSS receiver, LiDAR, camera, and IMU 

may fail simultaneously. GNSS receivers cannot receive 

GNSS signals in an underground environment, such as tunnels 

and sewage canals [14], since GNSS signals will be blocked 

by physical. In addition, GNSS signals can also be spoofed by 

manipulating the signals, such as retransmitting captured 

GNSS signals after a delay [15], [16]. In GNSS-denied 

situations, LiDAR or camera sensors are usually adopted to 
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capture environment features to eventually obtain localization 

solutions [17]. However, LiDAR detector is vulnerable to 

adverse weather conditions such as rain, snowing, and 

fogging. The wavelength of LiDAR in most autonomous 

driving systems usually has three types, including 905 nm, 940 

nm, and 1550 nm [18], while the raindrop size is significantly 

larger, usually ranging from 1mm to 2mm, which means that 

raindrops can be detected by LiDAR. Therefore, the ability of 

LiDAR detectors will degrade on rainy days since raindrops 

will be detected as objects, disturbing the detection of 

landmarks, vehicles, and other objects of interest [19], [20]. 

The performance of camera sensors is also affected by the 

environment, especially by lighting conditions. Specifically, 

the performance of the visual feature detection and tracking 

would be significantly degraded due to extremely low and 

unstable illumination conditions [21]. When a LiDAR or 

camera produces excessive errors, IMU is usually adopted to 

provide localization in a short period. In the localization 

community, IMU has been regarded as a robust solution and 

has been integrated into various localization and navigation 

systems for a long time [22], [23]. However, IMU may fail in 

some extreme conditions, such as highly vibrating 

environments [24]. In addition, Micro-electro-mechanical 

systems (MEMS) inertial sensors are known to be spoofed by 

acoustic injection attacks, which exhibit extra forces on the 

sensing mass of the MEMS accelerometers [25]. A number of 

flight crashes have been attributed to IMU failure, such as the 

crashes of Adam Air 574 [26]. Although countermeasures are 

developed, such as using multiple IMUs to increase the system 

redundancy [27], conducting IMU failure detection aided by 

other sensors [28], and even utilizing deep learning 

technologies to predict the increment of the vehicle position 

during sensor failures [29], these approaches still make an 

underline assumption that at least one sensor for localization 

functions well. However, human drivers can deal with those 

complexities with experience and common sense. Although 

researchers have been developing advanced algorithms to 

improve the performance of these sensor-based localization 

approaches, it is not enough to produce the desired 

localization performance unless the development of these 

sensors can overcome their inner limitations and become 

robust to spoofing signals. Therefore, instead of purely being 

enabled by sensors, it is worthwhile to investigate the 

possibility of utilizing information from other sources to 

improve localization performance and fight for sensor failures. 

Environmentally independent VDM-based localization: 

One possible way is to re-examine vehicle dynamic models 

(VDMs) since localization methods based on them are not 

affected by sensors’ conditions. According to the definition of 

the Society of Automotive Engineers (SAE), vehicle dynamic 

model is the application of physical laws to a vehicle in 

motion [30]. Scientifically speaking, an accurate VDM can 

perfectly estimate the motion of the system based on the given 

system control inputs. Many researchers have integrated 

vehicle dynamics into the development of localization 

methods, such as the IMU/VDM integrated navigation system 

[28], [31] and the motion compensation in constructing 

accurate LiDAR observations for localization tasks [32]. 

However, vehicle dynamic models applied in these methods 

usually make some assumptions about the environments and 

simplification of the system complexity which may overlook 

the latency (the time required to reach a steady response) 

caused by control systems [33]. As AVs usually operate in a 

changing and highly unpredictable environment, vehicle 

dynamic models can hardly consider all influencing factors 

and guarantee a good localization result when sensors fail. 

Nevertheless, vehicle dynamic models have been widely 

applied in AVs for multiple tasks, such as the update process 

in the extended Kalman filter (EKF) based localization 

method [34] and Ackerman turning geometry in turning 

control [35]. In these applications, vehicle dynamic models 

provide a coarse estimation of the system state while 

corrections on it are made by sensors’ measurements in 

different perspectives to generate a reliable estimation 

eventually. For example, measurements about vehicle position 

from exogenous sensors will correct the estimation made by 

vehicle dynamic models in the EKF-based localization 

process. Unfortunately, such kind of corrections is still limited 

by potential sensor failures. Fortunately, system identification 

brings the opportunity to provide a new kind of correction to 

VDM when AVs encounter sensor failures. System 

identification is a term in the control field that refers to the 

technology of “building mathematical models of dynamic 

systems from observed input-output data”[36]. As the 

estimation errors of VDM mainly come from unknown system 

characteristics and changing environments, it is tough to 

consider all these factors in modeling VDM with specialized 

knowledge, such as the cornering stiffness of tires and the 

bank angle of roads [37]. However, the knowledge of system 

identification can be applied to estimate the system responses 

affected by these factors in a data-driven approach [38], 

consequently correcting VDM estimation by providing a better 

control input signal than raw control commands.  

In light of this finding, this study aims to bridge the gap 

between vehicle dynamic models and system identification to 

provide a reliable ego-localization for AVs when sensors fail 

in a short period. In particular, this paper proposes a sensor-

free localization method VDM-SI by integrating the system 

identification into the design of VDM. Specifically, essential 

system dynamics of the AV are first identified by utilizing 

perception, planning, and control information when sensors 

function well. Then the identified system dynamics is used to 

estimate the system response of the AV, which is integrated 

into the control input design of VDM to provide reliable ego-

localization under sensor failures. In addition, the proposed 

VDM-SI is integrated with noisy sensor information from 

LiDAR matching with prior maps via an extended Kalman 

filter (EKF) [39] to demonstrate the ability of VDM-SI in 

improving the localization performance of mainstream 

localization systems. The contributions of this study are as 

there folds: 

(1) A universal sensor-free localization method. This study 

proposes a sensor-free localization method by integrating 

system identification into the design of vehicle dynamic 

models when AVs have sensor failures, enhancing the 

resilience of AVs in extreme conditions. In particular, the 

proposed method is not limited to a specific vehicle dynamic 

model but is applicable to all kinds of vehicle dynamic 



3 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

models. 

(2) Extendable to fusion-based localization system. This 

study experimentally demonstrates the proposed method can 

be easily integrated into mainstream sensor fusion-based 

localization systems, improving their localization performance 

under significantly high noise levels. 

(3) Bridge the gap between control and localization. This 

study builds the bridge between system identification of the 

control system and localization in the autonomous system, 

which demonstrates the potential of endogenous information 

in autonomous systems to enhance its ability on localization 

tasks, and encourages researchers to explore this direction. 

The structure of the paper is as follows. The first section 

reviews the limitation of sensor-based localization in 

autonomous vehicles and briefly introduces the proposed 

sensor-free localization method, whose overall architecture is 

illustrated in Section II. Section III describes the VDM-based 

localization method and discusses its limitation from a 

mathematical view. Section IV first introduces the basic 

process of system identification and proposes the VDM-SI 

method by integrating VDM and system identification. In 

Section V, an extended Kalman filter is constructed by fusing 

the proposed VDM-SI and noisy sensors. Numerical 

experiments are conducted in Section VI to evaluate the 

system identification performance and the localization 

performance of the proposed method. In addition, the ability 

of VDM-SI to enhance the security of AVs in extreme 

conditions is examined in a re-localization and resuming 

navigation experiment. Finally, the last section presents a 

summary. 

II. OVERVIEW OF THE PROPOSED INTEGRATION SYSTEM 

As discussed in Section I, all sensors have inevitable 

limitations and cannot guarantee stability and correctness 

under certain circumstances. However, nearly all navigation 

solutions in AVs heavily rely on sensors. As AVs have been 

gradually becoming an important part of human society, it 

might be fatal even if all sensors fail in a short period. 

Therefore, a sensor-free localization method is needed to 

extend the navigation service under sensor failures, serving as 

a ‘life-saving mechanism’ before sensors recover. 

The architecture of the proposed method is shown in Fig. 2. 

When AVs operate normally with well-functioning sensors, an 

offline system identification process is executed to identify the 

system dynamics of two plants in AVs, including the 

powertrain and the steering system. Control commands 

obtained from planning and control modules are regarded as 

the input data of system identification. At the same time, the 

responses of plants, such as linear velocity and angular 

velocity measured by sensors, are taken as the output data. 

When AVs have sensor failures, the identified system 

dynamics is utilized to estimate the system response of control 

commands, which is taken as the control input of the VDM to 

estimate the ego-pose of the vehicle. Such pose estimation 

could be used to develop an advanced localization system 

based on sensor fusion methods, such as Kalman filters [40] 

and factor graph optimization [41]. To ease the reading, we 

list all used symbols in Table IX in the appendix. 

 

 
Fig. 2. The architecture of the proposed method. 

III. VEHICLE DYNAMIC MODELS BASED LOCALIZATION 

Vehicle dynamic model (VDM) is the application of 

physical laws to a vehicle in motion [30], which can provide a 

coarse estimation of the motion of the system and is widely 

adopted in the development of advanced localization methods. 

In this study, the bicycle kinematic model [37] is employed to 

describe the vehicle motion and estimate the ego-pose of the 

vehicle based only on geometric relationships, which are not 

affected by sensors’ conditions. 

 

 
Fig. 3. The kinematic bicycle model. 

 

A. The two-wheel bicycle kinematic model 

Fig. 3. depicts the kinematic bicycle model used in this 

study. The left and right front wheels of four-wheel 

autonomous vehicles are represented by one front wheel at 

point M, while the two rear wheels are represented by one rear 

wheel at point N . Point V  represents the center of gravity, 

dividing the wheelbase of the vehicle into two parts 𝑙𝑟 and 𝑙𝑓. 

As mainstream autonomous vehicles adopt the front-wheel 

steering mechanism, the steering angle of the front wheel is 

represented by 𝛿𝑓  while the steering angle of the rear wheel 

(𝛿𝑟) is set to zero. By drawing two lines perpendicular to the 

orientation of the front wheel and rear wheel respectively, an 

intersection point C  is obtained, which is the instantaneous 

rolling center for the vehicle. In addition, the length of the line 
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CV  is the radius 𝑅  of the vehicle’s path and the vehicle 

velocity 𝑣 is perpendicular to this line. With the assumption 

that the vehicle only moves in a plane and that slip angles at 

both wheels are zero under low-speed conditions [37], the slip 

angle of the vehicle 𝛽  is defined by the direction of 𝑣  with 

respect to the longitudinal axis of the vehicle. By applying 

sine rule to triangle CVM, we have: 

sin(𝛿𝑓 − 𝛽)

𝑙𝑓
=

sin (
𝜋
2

− 𝛿𝑓)

𝑅
. (1) 

As 𝛿𝑟 = 0, in the orthogonal triangle CVN, we have: 

sin(𝛽) =
𝑙𝑟
𝑅

. (2) 

The slip angle 𝛽 can be solved with (1) and (2): 

𝛽 = tan−1 (
𝑙𝑟

𝑙𝑓 + 𝑙𝑟
tan(𝛿𝑓)) . (3) 

The heading angle (𝜓) of the vehicle is the angle made by the 

line MN  and the horizontal direction. With the low-speed 

assumption, the rate of change of 𝜓 is identical to the angular 

velocity: 

�̇� =
𝑣

𝑅
. (4) 

By substituting (2) into (4), (4) can be re-written as: 

�̇� =
𝑣

𝑙𝑟
sin(𝛽) . (5) 

Then the rate of change of the horizontal movement �̇� and the 

vertical movement �̇� are given by: 

�̇� = 𝑣𝑐𝑜𝑠(𝜓 + 𝛽), (6) 

�̇� = 𝑣𝑠𝑖𝑛(𝜓 + 𝛽). (7) 

Let 𝑎  be the acceleration along the velocity orientation, the 

rate of change of velocity �̇� is given by: 

�̇� = 𝑎. (8) 

Then the planar motion of the vehicle can be described by 

three coordinates (𝑥, 𝑦, 𝜓)  using (3)(5)(6)(7)(8), where the 

steering angle of the front wheel 𝛿𝑓 and the acceleration along 

the velocity orientation 𝑎 are the control inputs. 

B. Limitations of VDM-based localization methods 

Through the modeling process of the two-wheel bicycle 

kinematic model, one could easily observe that assumptions 

about wheel slip angles (the angle made by the tire axis and 

the wheel direction) and low-speed conditions have been 

made. Once these assumptions are not satisfied in the field 

test, localization errors arise. This phenomenon is not unique 

to the two-wheel bicycle kinematic model but widely exists in 

various vehicle dynamic models. For example, in the 14-DOF 

vehicle model [42], the sprung mass pitch angle and the 

sprung mass roll angle are assumed to be small values. In 

general, VDMs usually make assumptions about environments 

and simplification on the system's complexity. As AVs usually 

operate in changing and highly unpredictable environments, 

VDMs can hardly consider all influencing factors and 

guarantee a good motion estimation when sensors fail.  

Furthermore, localization errors raised from the VDMs will 

accumulate when sensors fail to provide corrections. To 

quantify the localization error with time in an intuitive way, 

we assume the process in the planning and control module can 

be simplified by a linear difference equation: 

𝐮𝑡 = 𝐃𝑣(𝐬𝑡−1 − 𝐠𝑡), (9) 

whereas 𝐬𝑡−1  is the system state at time 𝑡 − 1 , 𝐠𝑡  is the 

planning goal for time instant 𝑡, 𝐮𝑡  is the control command 

produced by the planning and control module at time 𝑡, and 

𝐃𝑣 is the coefficient matrix. Similarly, the vehicle motion can 

also be represented by a linear difference equation: 

𝐬𝑡 = 𝐀𝑣𝐬𝑡−1 + 𝐁𝑣𝐮𝑡 , (10) 

where 𝐀𝑣 and  𝐁𝑣 are coefficient matrices.  

Assuming the estimated state by VDM at time 𝑡 − 1 is �̂�𝑡−1, 

the control command generated in the planning and control 

module according to �̂�𝑡−1and 𝐠𝑡 can be represented by: 

�̂�𝑡 = 𝐃𝑣(�̂�𝑡−1 − 𝐠𝑡). (11) 

For simplification, the vehicle motion depicted by VDM is 

written by (12), with an additional error term 𝐂𝑣 compared to 

(10):  

�̂�𝑡 = 𝐀𝑣�̂�𝑡−1 + 𝐁𝑣�̂�𝑡 + 𝐂𝑣, (12) 

Therefore, the localization error 𝐞𝑡  can be derived by the 

following equations:  

𝐞𝑡 = 𝐬𝑡 − �̂�𝑡 . (13) 

By substituting (10) and (12) into (13), we can obtain the 

recursive equation of 𝐞𝑡 as below: 

𝐞𝑡 = 𝐬𝑡 − �̂�𝑡 = 𝐀𝑣𝐞𝑡−1 + 𝐁𝑣𝐃𝑣𝐞𝑡−1 − 𝐂𝑣. (14) 

Then, the relationship between 𝐞𝑡 and 𝐞0 can be derived: 

𝐞𝑡 = (𝐀𝑣 + 𝐁𝑣𝐃𝑣)
𝑡𝐞0 − ∑ (𝐀𝑣 + 𝐁𝑣𝐃𝑣)

𝑘−1𝐂𝑣

𝑡

𝑘=1
. (15) 

As the localization error at the time 𝑡0  is 𝐞0 = 0 , the 

localization error at time 𝑡 can be obtained:  

𝐞𝑡 = −∑ (𝐀𝑣 + 𝐁𝑣𝐃𝑣)
𝑘−1𝐂𝑣

𝑡

𝑘=1
                   

     = {

−𝑡𝐂𝑣                , 𝐀𝑣 + 𝐁𝑣𝐃𝑣 = 𝐈 

(𝐀𝑣 + 𝐁𝑣𝐃𝑣)
𝑡 − 𝐈

𝐀𝑣 + 𝐁𝑣𝐃𝑣 − 𝐈
𝐂𝑣 , 𝐀𝑣 + 𝐁𝑣𝐃𝑣 ≠ 𝐈 .

(16) 

Note that the localization error produced by VDM increases 

exponentially over time (except in the case 𝐀𝑣 + 𝐁𝑣𝐃𝑣 = 𝐈 , 

where the error increases linearly), whereas the error term 𝐂𝑣 

between VDM and real vehicle motion process plays a role as 

a gain factor. Due to the fact that sensors fail to provide 

correction to VDM estimation, the accumulated error is 

inevitable. However, the gain factor 𝐂𝑣  can be reduced by 

developing advanced VDMs with higher precision. The 

essence is to consider system characteristics and 

environmental information as much as possible, such as the 

cornering stiffness of tires and the bank angle of roads [37]. 

Nonetheless, as AVs usually operate in a changing and highly 

unpredictable environment, vehicle dynamic models can 

hardly consider all influencing factors and guarantee a good 

localization result when sensors fail. However, these factors 

will affect the system performance, which can be captured by 

some endogenous features of the system, such as the system 

responses to given control commands. Through examining 

these endogenous features of the system, information about 

the unknown system characteristics and the environment 

change could be derived in some aspect, eventually providing 

corrections to VDM-based localization systems. Inspired by 

this, this paper examines the endogenous feature of the system 

by system identification and integrates it into the VDM-based 

localization system, which will be illustrated in the next 

section.  
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IV. INTEGRATION OF SYSTEM IDENTIFICATION AND VEHICLE 

DYNAMIC MODELS 

In most VDMs, the control inputs should be the measured 

physical states, such as the front wheel steering angle 𝛿𝑓 and the 

acceleration 𝑎  involved in (5)-(7). When sensors fail, such 

measurement will be unavailable, and the control command 

produced by the planning and control module would be the 

promising alternative. In other words, VDM assumes that the 

system response to the control command is identical to the control 

command. However, the response in physical systems is different. 

For example, the response of a typical second-order system to a 

unit step input is shown in Fig. 4. The amplitude of the response 

gradually converges to a final state value with oscillations. In 

addition, the response exhibits a noticeable time delay with 

respect to the input signal. These phenomena also exist in a 

higher-order system, such as the powertrain and steering system 

in AVs. Note that the characteristic of the response to the input 

signal is related to both system characteristics and environmental 

conditions. For example, changing the load of a proportional 

integral derivative (PID) [43] controlled full direct current (DC) 

motor will affect its angular velocity response [44]. As AVs 

usually operate in a highly changing environment, the system 

response to the same control command may vary significantly 

over different time periods. Therefore, the system response can be 

viewed as a measurement of system states under changing 

environments when sensors fail. In light of this, this section will 

examine and model the system response of AVs’ plants, 

including the powertrain system and the steering system, so-

called system identification, which will be used to correct the 

estimation by the VDM-based localization system. 

 

 
Fig. 4. The step response of a typical second-order system. 

A. Introduction of system identification 

To model the system response of a physical system, system 

identification is applied in this study. System identification is 

the science of “building mathematical models of dynamic 

systems from observed input–output data”[36]. System 

identification mainly consists of three procedures [38]. First, 

collecting the input-output data during a designed diverse 

experiment to ensure that data become maximally informative. 

Then, selecting a set of candidate models based on prior 

knowledge about the system or experience. In this step, 

models developed based on physical interpretations with 

adjustable parameters are so-called grey-box models, while 

models whose parameters lack physical meanings are called 

black-box models [38]. In the third step, optimizing 

parameters of each candidate model with the collected data 

and deciding the best model according to certain criterias, 

such as mean-square error on predicting the system dynamics.  

In this study, pseudo-random binary sequence (PRBS) is 

used as the input signal to excite the system. PRBS is 

commonly used in system identification since it is the 

deterministic approximation of white noise in discrete time, 

which means that it can excite all frequencies equally well. A 

set of process models are chosen for the identification of the 

powertrain system and the steering system in AVs. In 

industrial practice, identification for control is usually based 

on the construction of low-order process models [45]. For 

example, the form of a typical first-order-plus-dead-time 

(FOPDT) process model can be denoted as follows, 

𝐺𝐹𝑂𝑃𝐷𝑇(𝑠) =
𝐾𝑝

1 + 𝑠𝑇𝑤
𝑒−𝑠𝑇𝑑 , (17) 

where 𝑠 is the complex frequency domain parameter, 𝐾𝑝 is the 

static gain, 𝑇𝑤 is the time constant, and 𝑇𝑑 is the time delay. A 

typical second-order-plus-dead-time (SOPDT) process model 

can be written as below, 

𝐺𝑆𝑂𝑃𝐷𝑇(𝑠) =
𝐾𝑝(1 + 𝑠𝑇𝑧)

1 + 2𝑠𝜁𝑇𝑤 + 𝑠2𝑇𝑤
2
𝑒−𝑠𝑇𝑑 , (18) 

where 𝑇𝑧 is the parameter related to the process zero, and 𝜁 is 

the damping coefficient. A typical third-order-plus-dead-time 

(TOPDT) process model is given below, 

𝐺𝑇𝑂𝑃𝐷𝑇(𝑠) =
𝐾𝑝(1 + 𝑠𝑇𝑧)

(1 + 2𝑠𝜁𝑇𝑤 + 𝑠2𝑇𝑤
2)(1 + 𝑠𝑇𝑝3)

𝑒−𝑠𝑇𝑑 , (19) 

where 𝑇𝑝3 is related to the additional pole in the TOPDT. For 

more types of structures for process models, one can refer to 

[46]. In addition, a disturbance model based on the ARMA 

model is introduced to model the noise in the system. The 

prediction by the identified model can be formulated as below: 

�̂�(𝑠) = 𝐺𝑢(𝑠) + 𝐻𝑒𝑤(𝑠), (20) 

𝐻 =
𝑐0 + 𝑐1𝑠 + 𝑐2𝑠

2 + ⋯𝑐𝑛𝑠𝑛

𝑑0 + 𝑑1𝑠 + 𝑑2𝑠
2 + ⋯𝑑𝑛𝑠𝑛

, (21) 

where 𝑢(𝑠) is the input, 𝑒𝑤(𝑠) is the white noise, �̂�(𝑠) is the 

estimated system response in the s-domain, 𝐺 is the process 

model, and 𝐻  is the disturbance model, represented by a 

transfer function whose nominator and denominator are 

polynomials for an autoregressive moving average (ARMA) 

model [47]. All the above parameters will be estimated by 

least square optimization methods, which are commonly used 

in system identification [38].  

To evaluate the performance of the models’ parameters 

estimation using the least square optimization methods, three 

criteria including Akaike's Information Criterion (AIC) [48], 

fit ratio (FIT) [38], and mean-square error (MSE) are 

employed. Specifically, FIT measures how close the estimated 

model approximates the true model, 

𝐹𝐼𝑇 =

(

 1 −
√∑ 𝑒𝑡

𝑟2𝑁
𝑡=1

√∑ 𝑦𝑡
𝑟

 
𝑐 2𝑁

𝑡=1 )

 ∗ 100%, (22) 

MSE focuses on the error between the model prediction and 

the system output,  

𝑀𝑆𝐸 =
1

𝑁
∑𝑒𝑡

𝑟2

𝑁

𝑡=1

, (23) 

and the AIC criteria penalize MSE and the model complexity 

simultaneously, 
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𝐴𝐼𝐶 = 𝑁 log (det (
1

𝑁
𝐞𝑠𝑇𝐞𝑠)) + 2𝑛𝑝

+𝑁(log(2π)𝑛𝑦 + 1), (24)
 

where 𝑒𝑡
𝑟 = 𝑦𝑡

𝑟 − �̂�𝑡 , 𝐞𝑠 = [𝑒1
𝑟 , 𝑒2

𝑟 , … , 𝑒𝑁
𝑟 ]𝑇 , 𝑦𝑡

𝑟
 
𝑐 = 𝑦𝑡

𝑟 −
1

𝑁
∑ 𝑦𝑡

𝑟𝑁
𝑡=1 , 𝑦𝑡

𝑟  is the measured system response in the time 

domain, �̂�𝑡  is the estimated system response in the time 

domain, 𝑛𝑝 is the number of free parameters in the model, 𝑛𝑦 

is the number of model outputs, and 𝑁  is the number of 

samples in the estimation dataset. 

B. Integrating system identification and VDM 

The process model is constructed in s-domain, which cannot 

be directly used to predict the time response of a given input 

signal in the time domain. However, the control command in 

AVs is inherently given in the time domain. To represent the 

identified model in the time domain, we transfer the process 

model to a state-space form [49] as: 

�̇�𝑚 = 𝐀𝑠𝐬
𝑚 + 𝐁𝑠𝐮

𝑠 + 𝐊𝑠𝐞
𝜂 , (25) 

𝐫𝑜 = 𝐂𝑠𝐬
𝑚 + 𝐃𝑠𝐮

𝑠 + 𝐞𝜂 , (26) 

where 𝐀𝑠, 𝐁𝑠, 𝐂𝑠, 𝐃𝑠, 𝐊𝑠  are state-space parameters, 𝐬𝑚  is the 

vector of middle states in the time-domain, �̇�𝑚  is the 

derivative of 𝐬𝑚 with respect to time, 𝐫𝑜 is the output vector 

related to the estimated system response, 𝐮𝑠 is the input vector 

related to the input commands, and 𝐞𝜂  is the white noise 

vector. The value of 𝐀𝑠, 𝐁𝑠, 𝐂𝑠, 𝐃𝑠, 𝐊𝑠 can be derived by using 

the method described in [49]. 

Therefore, the estimated system responses can be applied to 

VDM models under sensor failures, as shown in Fig. 2. In this 

study, we mainly identify the powertrain system and the 

steering system in AVs. Assuming the estimated system 

response of the powertrain system to the acceleration 

command is �̂�, and the estimated system response of the 

steering system to the steering command is 𝛿𝑓 , VDM will 

adopt �̂� and 𝛿𝑓  as the control inputs. The modified VDM is 

named VDM-SI, which can be represented below: 

�̇� = 𝑣𝑐𝑜𝑠(𝜓 + 𝛽), (27) 

�̇� = 𝑣𝑠𝑖𝑛(𝜓 + 𝛽), (28) 

�̇� =
𝑣

𝑙𝑟
sin(𝛽) , (29) 

�̇� = �̂�, (30) 

𝛽 = tan−1 (
𝑙𝑟

𝑙𝑓 + 𝑙𝑟
tan(𝛿𝑓)) . (31) 

V. FUSION WITH NOISY SENSORS BASED ON EXTENDED 

KALMAN FILTERS 

In localization systems, sensor measurements are usually 

coupled with noises that might be too large to produce reliable 

localization results. To tackle this issue, fusion methods, such as 

Kalman filters (KF), are employed to fuse the information from 

multi-source sensors and motion models. More specifically, the 

KF-based fusion method consists of two components: the 

measurement equation based on sensor measurements; and the 

state equation based on motion models. When sensor 

measurements are largely affected by noises, the localization 

performance will highly rely on the prediction accuracy arising 

from the motion model. To explore the ability of VDM-SI in 

improving the localization performance of these fusion methods 

with noisy sensor measurements, this section integrates VDM-SI 

with LiDAR in a loosely coupled structure based on the extended 

Kalman filters (EKF) [39]. In particular, the NDT-matching 

algorithm [50], which is a typical matching algorithm for the 

LiDAR matching problem, is deployed to estimate the ego-pose 

of the vehicle based on raw LiDAR point clouds, and the VDM-

SI is used to construct the propagation function. The performance 

of the fusion system will be discussed in Section VI-D. 

A. Discretization and Linearization 

The differential equations of VDM-SI in (27)-(31) need to be 

integrated into differences equations to account for discrete time 

intervals. Assuming the velocity of the vehicle is constant during 

a short period ∆𝑡, we have: 

𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑘𝑐𝑜𝑠(𝜓𝑘 + 𝛽𝑘+1)∆𝑡, (32) 

𝑦𝑘+1 = 𝑦𝑘 + 𝑣𝑘𝑠𝑖𝑛(𝜓𝑘 + 𝛽𝑘+1)∆𝑡, (33) 

𝜓𝑘+1 = 𝜓𝑘 +
𝑣𝑘

𝑙𝑟
𝑠𝑖𝑛(𝛽𝑘+1)∆𝑡 . (34) 

By assuming the acceleration is also constant during ∆𝑡, we have: 

𝑣𝑘+1 = 𝑣𝑘 + �̂�𝑘+1∆𝑡. (35) 

Besides, the discrete form of (31) is given below: 

𝛽𝑘+1 = 𝑡𝑎𝑛−1 (
𝑙𝑟

𝑙𝑓 + 𝑙𝑟
tan(�̂�𝑓,𝑘+1)) . (36) 

Define 𝐬𝑘 = [𝑥𝑘, 𝑦𝑘, 𝜓𝑘, 𝑣𝑘]
𝑇 as the state vector of the vehicle at 

time instant k, the above equations could be represented with a 

non-linear function 𝑓(∙) as: 

𝐬𝑘+1 = 𝑓(𝐬𝑘, �̂�𝑘+1, 𝛿𝑓,𝑘+1). (37) 

By taking the first-order Taylor expansion at point 

(�̂�𝑘, �̂�𝑘, �̂�𝑘, �̂�𝑘 ), the Jacobian matrix of 𝑓(∙) can be obtained as 

below: 

𝐅𝑘 =
𝜕𝑓(𝐬𝑘, �̂�𝑘+1, 𝛿𝑓,𝑘+1)

𝜕𝐬𝑘
|
𝐬𝑘=[�̂�𝑘,�̂�𝑘,�̂�𝑘,�̂�𝑘]

𝑇
 

=

[
 
 
 
 
 
1 0 −�̂�𝑘 sin(�̂�𝑘 + 𝛽𝑘+1)∆𝑡 �̂�𝑘𝑐𝑜𝑠(�̂�𝑘 + 𝛽𝑘+1)∆𝑡

0 1 �̂�𝑘𝑐𝑜𝑠(�̂�𝑘 + 𝛽𝑘+1)∆𝑡 �̂�𝑘 sin(�̂�𝑘 + 𝛽𝑘+1)∆𝑡

0 0 1
sin(𝛽𝑘+1)

𝑙𝑟
∆𝑡

0 0 0 1 ]
 
 
 
 
 

, (38) 

B. Fusion based on Extended Kalman Filter 

By introducing the process noise 𝐰𝑘 which is assumed to be 

a zero-mean Gaussian noise with covariance 𝐐𝑘 =
𝑑𝑖𝑎𝑔(𝛿𝑝

2, 𝛿𝑝
2, 𝛿𝜓

2 , 𝛿𝑣
2) , where 𝛿𝑝 , 𝛿𝜓 and 𝛿𝑣  are the standard 

deviation of the position component, the orientation 

component, and the velocity component in the process noise, 

respectively. The state equation in (37) could be written as: 

𝐬𝑘+1 = 𝑓(𝐬𝑘, �̂�𝑘+1, 𝛿𝑓,𝑘+1) + 𝐰𝑘. (39) 

Define 𝐳𝑘  as the estimated pose by the NDT-matching 

algorithm [50], and 𝛈𝑘  as the measurement noise which is 

assumed to be a zero-mean Gaussian noise with covariance 

𝐑𝑘 = 𝑑𝑖𝑎𝑔(𝜎𝑝
2, 𝜎𝑝

2, 𝜎𝜓
2) , where 𝜎𝑝  and 𝜎𝜓  are the standard 

deviation of the position component and the orientation 

component in the measurement noise, respectively. The 

measurement function could be written as: 

 𝐳𝑘 = 𝐌𝑘𝐬𝑘 + 𝛈𝑘 , (41) 

𝐌𝑘 = [
1 0 0 0
0 1 0 0
0 0 1 0

] . (42) 
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Based on (39) and (40), the fusion of VDM-SI and LiDAR 

measurement can be achieved by a general extended Kalman 

filter [39]. For clarity, the integrated system is denoted as 

EKF-VDM-SI. 

VI. NUMERICAL EXPERIMENTS 

A. Setup of the experiment platform 

In this paper, all experiments are conducted in a half-

simulated environment, which is created by the 3D simulator, 

Gazebo [51]. The main reasons for only conducting the 

simulation to validate the effectiveness of the proposed 

method are listed below:  

(1) This paper aims to explore the potential of VDM during 

sensor failures. Since the dynamic model cannot be perfectly 

recovered for the real AV system, by utilizing the simulation, 

the parameters of the system dynamic model can be adjusted 

and labeled easily.  

(2) The control and path planning would affect the 

performance of the VDM. Therefore, it is hard to exclude 

impacts of the AV system control and planning on the VDM-

based localization. Compared to a field study, it is much easier 

to control variables and set up experiments in a simulated 

environment [52], [53].  

(3) The recently developed simulators for the AV are quite 

mature to simulate the dynamics and raw sensor 

measurements, such as Gazebo [51] and CARLA [54], which 

inspired us the perform the validation using the simulated 

dataset.  

In the experiment, an autonomous vehicle with full 

autonomy is employed as the experiment platform, whose 

software stack is developed based on Autoware  [4], an open-

source autonomous driving software. Specifically, a Velodyne 

HDL-32 LiDAR is adopted to measure the vehicle states, 

including position, orientation, velocity, and acceleration, 

providing essential information for the development of the 

localization module, which mainly adopts the NDT-Matching 

algorithm [50]. The planning module is mainly based on the 

A-star algorithm [55], while the control module simply 

employs the pure pursuit algorithm [56]. As the main research 

focuses on localization performance, an obstacle-free 

environment is assumed, indicating that the localization 

module can provide essential information for the AV to move 

from the start point to the endpoint. Therefore, we omit the 

construction of the perception module to highlight the main 

point. The typical parameters of the vehicle model in Gazebo 

are listed in Table I. In this chapter, all the computations are 

conducted using a desktop (Intel Core i7-10700 CPU, 2.90 

GHz). 
TABLE I 

TYPICAL PARAMETERS OF THE VEHICLE MODEL IN GAZEBO 

Parameters 
Wheel 

radius 

Wheel 

width 

Wheel-

base 

Wheel 

tread 

Vehicle 

length 

Value 0.34 m 0.23 m 2.95 m 1.55 m 4.82 m 

Parameters 
Vehicle 

width 

Vehicle 

height 

Minimum 

turning 

radius 

Maximum 

steering 

angle 

 

Value 1.81 m 1.5 m 2.95o 97.3o  

B. Performance of system identification 

In the simulated vehicle by Gazebo, two plants including 

the powertrain and the steering system are employed. The 

powertrain consists of the engine and all of the components 

that convert the engine’s power into the movement of the 

vehicle, including transmission, driveshafts, differential, and 

axles [57]. The steering system consists of the steering wheel, 

the steering column, the steering gear, and other necessary 

components that turn the vehicle around the vertical axis while 

driving [58]. In the Autoware-Gazebo simulation, the 

powertrain system is designed to receive the velocity 

command from the control module and then drive the vehicle 

to move, while the steering system is designed to receive the 

steering angle command to turn the front wheels. 

1) Identification of the Powertrain System: In the 

identification of the powertrain system, a PRBS last for 60 

seconds is adopted as the velocity command to stimulate the 

powertrain. The sampling rate of the PRBS is set to 100 Hz, 

and its amplitude is set to 1 m/s, as shown in Fig. 5. The 

output data for the system identification is the real velocity of 

the AV measured by LiDAR and IMU. The steering command 

is kept to zero during the experiment. The collected input-

output data is split into two parts: the first 30-seconds part 

with 3000 samples is used for estimation, and another 30-

seconds part is for validation. Then a set of candidate models 

based on the low-order process model with delay and 

addictive ARAM disturbance model is constructed, where the 

order of poles range from 1 to 3, the order of zeros ranges 

from 0 to 1, and the order of disturbance model ranges from 0 

to 2. Table II lists the structure of these candidate models. 

 

 
Fig. 5. Input signals for identifying (a) the powertrain system; (b) the steering 

system. 

 

TABLE II 

THE STRUCTURE OF CANDIDATE MODELS 

Candidate 

models 

Order 

of poles 

Order 

of zeros 

Order of 

disturbance model 

Px 1, 2, 3 0 0 

PxZ 1, 2, 3 1 0 

PxD 1, 2, 3 0 0 

PxDZ 1, 2, 3 1 0 

PxEy 1, 2, 3 0 1, 2 

PxZEy 1, 2, 3 1 1, 2 

PxDEy 1, 2, 3 0 1, 2 

PxDZEy 1, 2, 3 1 1, 2 

Note: ‘P’ represents poles, ‘Z’ represents zeros, ‘D’ represents time delay, ‘E’ 

represents the disturbance model, ‘x’ represents the order of poles, and ‘y’ 

represents the order of disturbance model. 

 

By employing least square optimization, the optimal 

parameters of each model are estimated. Table III shows the 

performance of these models on the estimation and validation 

dataset. As can be seen, P3DZE2 and P3DE2 have the same 

lowest AIC on the estimation dataset, while the former 
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significantly outperforms the latter in terms of FIT and MSE 

on the validation dataset, suggesting that P3DZE2 (the 

TOPDT with one zero and a second-order ARMA disturbance 

model) is the best model among the candidate set. We notice 

that P3DZ has a competitive performance on FIT and MSE, 

but its AIC is considerably lower than that of P3DZE2. The 

only difference between P3DZE2 and P3DZ is the existence of 

the second-order ARMA disturbance model, whose effects are 

explored by conducting residual analysis, as shown in Fig. 6. 

 
TABLE III 

PERFORMANCE OF CANDIDATE MODELS IN IDENTIFYING THE POWERTRAIN 

SYSTEM 

Candidate 

Models 

Evaluation on 

Estimation Dataset 

Evaluation on 

Validation Dataset 

AIC FIT MSE 

P3DZE2 -1.03E+01 80.39% 9.00E-03 

P3DZ -4.45E+00 80.03% 9.33E-03 

P2DZ -3.95E+00 74.56% 1.52E-02 

P3DE2 -1.03E+01 73.02% 1.70E-02 

P3DZE1 -9.40E+00 70.67% 2.01E-02 

Note: only the top five models with the highest FIT on the validation dataset 

are presented. 

 

The autocorrelation of output residual for P3DZ is almost 

outside the 99% confidence interval, suggesting that most part 

of the residual could have been predicted from past data. 

Furthermore, the large magnitude of the cross correlation for 

P3DZ indicates that the residual is significantly influenced by 

specific inputs, demonstrating the deficiency of P3DZ in 

modeling the system dynamics. In contrast, P3DZE2 

significantly performs better both on the autocorrelation 

analysis and the cross-correlation analysis. The additional 

disturbance model in P3DZE2 improves the modeling ability 

of the process model in identifying the powertrain. Therefore, 

P3DZE2 is chosen as the best model in the candidate set. 

Since the kinematic bicycle model takes acceleration as the 

control input, the time derivative of the identified velocity 

response is applied to obtain the acceleration response. 
 

 
Fig. 6. Residual analysis of candidate models in identifying the powertrain 

system: (a) autocorrelation of residuals for output; (b) cross correlation for 

input and output residuals. 

 

2) Identification of the Steering System: The process of 

identificating the steering system is similar to that of the 

powertrain. A PRBS with an amplitude of 0.52 rad (around 30 

degrees) is adopted as the steering angle command to 

stimulate the steering system. LiDAR measures the angular 

velocity of the vehicle, which is converted to the steering 

angle by applying the Ackermann steering geometry [37]. The 

calculated steering angle is taken as the output data in the 

identification process. In addition, the velocity of the vehicle 

is set to 1 m/s during the whole process.   

As shown in Table IV, P2ZE2 has the lowest AIC among 

the candidate, while its FIT is marginally lower than P3DZU. 

Furthermore, residual analysis in Fig. 7 indicates that P2ZE2 

is more applicable than P3DZ. This finding is consistent with 

the result in the identification of the powertrain system, 

suggesting that the process model with a disturbance model 

can better approximate the steering system. It is interesting to 

find that the order of well-performed candidate models in the 

powertrain system identification is relatively higher than that 

in the steering system identification, possibly indicating that 

the powertrain system is more complex than the steering 

system. The identified models are then transferred to a state-

space form, which will be used to estimate the acceleration 

response and the steering response in the time domain. 

 
TABLE IV 

PERFORMANCE OF CANDIDATE MODELS IN IDENTIFYING THE STEERING 

SYSTEM 

Candidate 

Models 

Evaluation on 

Estimation Dataset 

Evaluation on 

Validation Dataset 

AIC FIT MSE 

P3DZ -6.75E+00 85.61% 5.11E-04 

P2ZE2 -1.23E+01 85.18% 5.42E-04 

P2D -6.65E+00 85.14% 5.45E-04 

P2E2 -1.23E+01 85.05% 5.51E-04 

P3ZE2 -1.23E+01 82.90% 7.21E-04 

Note: only the top five models with the highest FIT on the validation dataset 

are presented. 

 

 
Fig. 7. Residual analysis of candidate models in identifying the steering 

system: (a) autocorrelation of residuals for output; (b) cross-correlation for 

input and output residuals. 

C. Localization performance of VDM-SI 

In this section, the localization performance of VDM and 

VDM-SI are compared in two scenarios, as shown in Fig. 8. 

 
Fig. 8. Test scenarios. (a) a 90-degree bend with radius of curvature equal to 

20m; (b) a S-Curve with radius of curvature equal to 15m. The white dash line 

is the designed track. 

1) Performance along a 90-Degree Bend: In the first 

scenario, the autonomous vehicle is required to move along a 
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90-degree bend with a radius of curvature equal to 20 m at a 

constant speed of 30 km/h. LiDAR and IMU measurements 

provide essential information to the localization module of 

AV, keeping the vehicle running on the track. VDM and 

VDM-SI are implemented in a separate program to estimate 

the vehicle pose, which is only used for comparison.  

Fig. 9a shows the translation error of the localization results 

by VDM and VDM-SI. As can be seen, the translation error of 

VDM increases faster than that of VDM-SI. For a quantitative 

comparison, the absolute translation error (ATE) of VDM and 

VDM-SI along the 90-degree bend are calculated and listed in 

Table V. The mean ATE of VDM-SI decreases by more than 

70% compared to that of VDM, while a similar result is found 

in the max ATE and the rmse ATE, indicating that VDM-SI 

could effectively improve the localization performance. 
 

 
Fig. 9.  The translation error of localization results of VDM-SI and VDM 

along (a) the 90-degree bend and (b) the S-Curve. 

 

TABLE V 

THE LOCALIZATION PERFORMANCE OF VDM AND VDM-SI IN THE TWO TEST 

SCENARIOS 

Scenario ATE (m) VDM [37] VDM-SI 
Improved 

by VDM-SI 

90-degree bend 

MAX 21.65 5.87 72.88% 

MEAN 8.27 2.44 70.44% 

RMSE 10.53 2.94 72.07% 

S-Curve 

MAX 8.35 1.30 84.37% 

MEAN 3.20 0.70 78.05% 

RMSE 4.03 0.80 80.26% 

Note: The VDM is the benchmark method in this experiment and is 

specifically refers to the kinematic bicycle model [37] in this paper.  

 

2) Performance along a Roundabout: In the second 

scenario, the AV is required to move along an S-curve with a 

radius of curvature equal to 15 m at a constant speed of 15 

km/h. Similar to the experiment steps in the first scenario, the 

localization performance of VDM and VDM-SI along the S-

curve is evaluated. As shown in Fig. 9b, the translation error 

of the localization results by VDM-SI is consistently smaller 

than that of VDM. Table V presents the ATE of each method 

along the S-Curve. It is shown that VDM-SI has around 78% 

lower mean ATE than VDM, which is consistent with the 

result in the 90-degree bend experiment. 

D. Localization performance of EKF-VDM-SI with noisy 

sensors 

In this section, the localization performance of EKF-VDM-

SI is examined with noisy sensor measurements at different 

noise levels. The autonomous vehicle is required to trace a 

pre-designed track at a constant speed of 5 km/h, as shown in 

Fig. 10. Similar to the setting of Section VI-C, the localization 

module utilizes LiDAR to produce accurate localization 

results, enabling the normal operation of the planning and 

control modules, thus keeping the vehicle stick tightly to the 

track. The EKF-VDM-SI is implemented in a separate 

program to estimate the ego-pose of the vehicle, where its 

measurements are the pose estimation results by the NDT-

matching algorithm based on a simulated LiDAR sensor [50]. 

The prediction frequency of the EKF is set to 100 Hz,  and the 

frequency of LiDAR measurements is set to 10 Hz. To change 

the noise level of the simulated LiDAR sensor, we added zero-

mean Gaussian noises with different standard deviations to the 

raw LiDAR measurements. For comparison, EKF-VDM also 

is constructed by integrating VDM and the same 

measurements. In both EKF-VDM-SI and EKF-VDM, the 

initial pose is given by the estimated pose from NDT-

matching, the initial position error is set to 2 m, the initial 

orientation error is set to 0.5 rad, and the initial velocity error 

is set to 1 m/s. The covariance matrix of the process noise is 

set to be 𝐐𝑘 = 𝑑𝑖𝑎𝑔(0.22, 0.22, 0.12, 0.42) . The covariance 

matrix of the measurement noise 𝑅𝑘  is set according to the 

noise level of the simulated LiDAR sensor. 

 

 
Fig. 10. The simulated environment created by Gazebo. The designed track is 

marked with a white dash line. The locations on the track where sensors start 

to fail are pointed out by red arrows. 

 

Fig. 11 plots the trajectory of the estimated pose by EKF-

VDM-SI under different noisy levels of measurements. The 

trajectories of the estimated pose by NDT-matching and the 

ground truth pose are also plotted for visualization. As can be 

seen, with the increase of the noise level, the estimated pose 

by NDT-matching gradually loses the ability to reflect the 

actual state of the vehicle. Nevertheless, EKF-VDM-SI 

demonstrates good localization performance in all cases. Table 

VI shows the mean absolute translation error (ATE) of the 

localization results by EKF-VDM-SI and EKF-VDM in each 

noisy level. When the standard deviation of the added noise is 

2 meters, both methods can estimate the pose accurately. 

Nonetheless, the mean ATE of EKF-VDM-SI is more than 

17% smaller than that of EKF-VDM. With the increase of the 

noise level, the superiority of EKF-VDM-SI over EKF-VDM 

is maintained and becomes more apparent. Specifically, when 

the standard deviation of the added noise is 4 meters and 6 

meters, EKF-VDM-SI has around a 28% reduction in mean 

ATE compared to EFK-VDM. Interestingly, this advantage of 

EKF-VDM-SI is reduced with the standard deviation of the 

added noise increased to 8 meters. The improvement by EKF-

VDM-SI on mean ATE is reduced to around 18% in such a 

case. One possible reason is that the measurement noise is too 
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large to guarantee the performance of EKF-based localization 

methods, which limits the improvement brought by VDM-SI.  

 

 
Fig. 11.  The trajectory of the estimated pose by EKF-VDM-SI with noisy 

LiDAR measurements. Zero-mean gaussian noise is added into raw LiDAR 

measurements with the standard deviation of (a) 2m; (b) 4m; (c) 6m; (d) 8m. 

 

TABLE VI 

THE LOCALIZATION PERFORMANCE OF EKF-VDM AND EKF-VDM-SI UNDER 

DIFFERENT SENSOR NOISE LEVELS 

Std. of the added 

noise (m) 

EKF-VDM EKF-VDM-SI Improved by 

VDM-SI 

2 1.15 0.95 17.45% 

4 2.01 1.44 28.29% 

6 2.30 1.66 27.62% 

8 2.81 2.30 18.20% 

 

TABLE VII 

THE COMPUTATIONAL TIME OF THE  SUBPROCESSES IN THE EKF-VDM-SI 

(MILLISECOND: MS) 

Items System 

Identification 

State 

prediction 

Measurement 

update 

Total  

MEAN (ms) 0.05 0.13 0.24 0.20 

STD (ms) 0.02 0.04 0.06 0.09 

Max (ms) 0.21 0.35 0.46 0.59 

 

The computational time of system identification as well as 

other subprocesses in the EKF-VDM-SI are listed in Table 

VII. As can be seen, the mean computation time of system 

identification is only 0.05 ms, while the value of the state 

prediction process and the measurement update process in 

EKF are 0.13 ms and 0.24 ms, respectively. Therefore, the 

additional computation burden introduced by system 

identification is relatively small. Furthermore, the mean and 

maximum total computation time of EKF-VDM-SI are 0.20 

ms and 0.59 ms, respectively, which are less than 10 ms. Since 

the prediction frequency of the EKF is 100 Hz (i.e., the 

maximum allowable computation time for each solution is 10 

ms), EKF-VDM-SI ensures a real-time localization solution. 

E. Application on re-localization with sensor failures 

This section focuses on a real-world application of the 

proposed method: re-localization and resuming navigation 

after sensors fail and recover. It is possible for an AV to have 

sensor failures for a short time, during which the AV cannot 

localize itself precisely. Before sensors recover, the AV might 

not stop immediately and would move to an arbitrary location. 

At the moment that sensors recover, the AV has to re-localize 

itself to resume the navigation, where a good guess of the 

current position would be beneficial and even dominates the 

re-localization result. The reason is simple: a good initial 

guess can reduce the search efforts when the re-localization 

algorithms match the measured feature with the database. In 

this experiment, the initial guess will be provided by VDM or 

VDM-SI. 

 
TABLE VIII 

THE ACCOMPLISHMENT OF THE RE-LOCALIZATION AND RESUMING 

NAVIGATION TASK AFTER SENSORS FAIL AND RECOVER BASED ON THE INITIAL 

GUESS BY VDM AND VDM-SI 

Outage 

Time (s) 

Sensors Fail at location 1 Sensors Fail at location 2 

VDM VDM-SI VDM VDM-SI 

3 Success Success Success Success 

3.5 Fail Success Success Success 

4 Fail Fail Success Success 

5 Fail Fail Success Success 

6 Fail Fail Fail Success 

7 Fail Fail Fail Success 

8 Fail Fail Fail Fail 

 

In a simulated environment created by Gazebo, as shown in 

Fig. 10, we start the autonomous vehicle with a well-

functioning LiDAR. The AV would track a pre-designed 

trajectory at a constant velocity of 5 km/h. At the same time, 

the localization module adopts the NDT-Matching algorithm 

to estimate the ego-pose of the vehicle based on the LiDAR 

measurements. Note that LiDAR is the only source to capture 

environment information and obtain localization solutions in 

this experiment. Since the focus of this experiment is to 

evaluate the ability of VDM-SI to enhance the security of AVs 

with sensor failures, we do not utilize multiple sensors to 

construct a complicated localization system. After the AV 

arrives at the specified location, the LiDAR is shut down, and 

the AV purely relies on VDM or VDM-SI for localization and 

navigation. After Δ𝑡 seconds (the outage time), the LiDAR is 

recovered, and the localization module starts to re-localize the 

vehicle. In this experiment, the concern is whether the 

navigation task is resumed successfully. As shown in Fig. 10, 

we randomly selected two locations on the track for the 

experiment. 

The accomplishment of the re-localization task is shown in 

Table VIII. At location 1, VDM and VDM-SI can ensure the 

success of re-localization under the outage time of fewer than 

3 seconds. However, the VDM method fails to promise 

success in re-localization with an increased outage time. In 

contrast, the VDM-SI can still handle the task even though the 

outage time increased to 3.5 seconds. At location 2, the VDM-

SI can even ensure success in re-localization under a outage 

time of 7 seconds. However, the VDM fails the task even 

when the outage time is 6 seconds. Since the NDT-Matching 

algorithm is sensitive to the initial conditions [59], the 
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improved performance of VDM-SI on re-localization and 

resuming navigation indicates that VDM-SI could provide a 

more accurate initial guess of position than VDM.  

VII. CONCLUSION AND FUTURE WORK 

This study proposes a sensor-free localization method by 

integrating system identification into the design of vehicle 

dynamic models, providing reliable localization results when 

AVs have sensor failures. When sensors function well, a 

system identification process is conducted to model the system 

dynamics of the powertrain system and the steering system. 

When sensors fail, the identified system dynamics is utilized 

to estimate the response of control commands, which is taken 

as the control input of VDM.  

The localization results under two scenarios demonstrate 

that introducing system identification can significantly 

improve the localization performance of VDMs, where the 

mean absolute translation error of VDM-SI is reduced by 70% 

compared to conventional VDM methods. In addition, we 

integrate VDM-SI with noisy sensors via extended Kalman 

filters and experimentally show that VDM-SI can improve the 

localization performance of mainstream fusion-based 

localization methods under significantly high noise levels. 

Furthermore, in a real-world problem, re-localization and 

resuming navigation after sensors fail and recover, VDM-SI 

shows the potential to provide a more accurate initial guess 

than conventional VDMs for re-localization when sensors start 

to recover, ensuring a higher probability of successfully 

resuming navigation and thus enhancing the security of AVs 

in extreme conditions. 

This study has several limitations, which also point out 

future research directions. In this study, the system 

identification process is conducted in an offline approach, 

which is vulnerable to capture the system dynamics in 

continuously changing environments. Future research should 

establish an online system identification process during the 

normal operation of the vehicle. In addition, this study gives 

little concern to the mechanism of how system identification 

could improve localization performance. Future research could 

establish the causality relationship between the property of the 

identified system dynamics and the improvement in 

localization performance. 

 

APPENDIX 

TABLE IX 

DESCRIPTION OF SYMBOLS. 

Sym Description  Sym Description 

Symbols in kinematic bicycle models 

𝛿𝑓 Front wheel steering angle 𝜓 Orientation  

𝛿𝑟 Rear wheel steering angle (𝑥, 𝑦) Plane coordinates 

𝑙𝑓 First part of wheelbase 𝑣 Velocity 

𝑙𝑟 Second part of wheelbase 𝑎 Acceleration along the 

velocity direction 𝛽 Slip angle 

Symbols in error propagation in VDM 

𝐠𝑡 Planning goal at 𝑡 �̂�𝑡 Control commands based 

on the estimated state 𝐬𝑡 System state vector at 𝑡 

�̂�𝑡 Estimated system state 

vector at 𝑡 

𝐀𝑣, 𝐁𝑣 The coefficient matrices 

in a general vehicle 

motion 𝐞𝑡 Localization error of 

general VDMs at 𝑡 𝐃𝑣 The coefficient matrix in 

𝐮𝑡 Control commands based 

on the real state 

a general control process 

𝐂𝑣 The additional error term 

Symbols in process models 

𝑠 The complex frequency 

domain parameter 
𝜁 The damping coefficients 

𝑇𝑑 The time delay 

 𝑢(𝑠) 

 

Input commands in s-

domain 
𝐾𝑝 The static gain 

𝑇𝑝3 The additional pole 

�̂�(𝑠) Estimated response in s-

domain 
𝐺 The transfer function of 

the process model 

𝑒𝑤(𝑠) White noise in s-domain 𝐻 The transfer function of  

the disturbance model 𝑇𝑤 The time constant 

𝑇𝑧 The process zero  

Symbols in evaluation of identified models 

𝑦𝑡
𝑟 Measured response at 𝑡 𝑛𝑝 Number of free 

parameters 

�̂�𝑡 Estimated response at 𝑡 𝑛𝑦 Number of model output 

𝑟𝑡 System response at 𝑡 𝑁 Number of samples  

Symbols in the state-space model 

𝐬𝑚 State vector   𝐀𝑠 , 𝐁𝑠, 
𝐂𝑠 , 𝐃𝑠, 
𝐊𝑠 

Coefficient matrices in the 

state-space model 𝐮𝑠 Input vector related to 

control commands 

𝐫𝑜 Output vector related to 

estimated system responses 
�̂� Identified acceleration 

response in time-domain 

𝐞𝜂 White noise vector  𝛿𝑓 Identified steering angle 

response in time-domain 

Symbols in the extended Kalman filters 

∆𝑡 Sampling time  𝐳𝑡 The estimated pose by the 

NDT-matching algorithm 

at 𝑡 
𝑓(∙) Non-linear state function 

𝐅𝑡 Jacobian matrix of 𝑓(∙) at 𝑡 

𝐰𝑡 Process noise at 𝑡 𝐌𝑡 Coefficient matrix in the 

measurement function at 𝑡 𝐐𝑡 Covariance matrix of 𝐰𝑡 

𝛈𝑡 Measurement noise at 𝑡 𝐑𝑡 Covariance matrix of 𝛈𝑡 

Note: “Sym” is the abbreviation of “Symbol”. 
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